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Abstract

This paper investigates the dependencies and comovements between S&P 500 and WTI
futures price by means of time-varying conditional beta, coskewness, and cokurtosis from
April 1983 to December 2021. The conditional beta, coskewness, and cokurtosis show a new
phase of stronger relationship between the two markets since the 2008 global financial crisis
(GFC). WTI shows greater sensitivity to S&P 500’s volatility and tail events than its counter-
part. Relying on time-varying parameter vector autoregression (TVP-VAR), and employing
three daily macroeconomic indicators including VIX (representing fear), economic policy
uncertainty (representing uncertainty), and expected business condition index (represent-
ing expectation), the impulse response of the stock-oil conditional comoments to macroeco-
nomic conditions are analyzed thoroughly. In particular, since GFC: (i) S&P 500 beta shows
much more stronger positive response to VIX shocks, while on the contrary WTI shows
larger and stronger negative response to VIX, (ii) conditional cokurtosis impulse responses
show patterns similar to betas, with economic uncertainty having greater impact on the
stock-oil dependencies, (iii) overall shocks from VIX, economic uncertainty, and expected
business condition, take longer to impact WTI conditional comoments, while they tend to
be more transient for S&P 500, and (iv) shocks to expectations on business condition creates
stronger, more volatile and, more asymmetric response across all conditional comoments
measures than VIX or economic policy uncertainty.

Keywords: Stock-Oil dynamics, Volatility modeling, Conditional Coskewness, Conditional
Cokurtosis, Energy market, Macroeconomic effect

1 Introduction

There is a rich literature on the oil price dynamics with economic variables and financial mar-
kets, due to the importance and fundamental effect of oil price in economy. There are many
papers (Singleton, 2014; Christoffersen & Pan, 2018; Christoffersen et al., 2019 among others),
showing that from 2004 onward - the period termed as "financialization" of commodity mar-
kets - the links between stock market and commodities have increased vastly. Christoffersen
et al. (2019) show that commodity volatility correlations have set a new mean since that time
and they are strongly related to stock market volatility (more than returns). They state that "the
principal components in commodity futures volatility appear to be strongly related to volatility
in other asset markets including the U.S. equity market". Christoffersen & Pan (2018) even find
that oil shocks create funding constraints in financial intermediaries.

*Part of this research was undertaken when I was a visiting research scholar Robinson College of Busi-
ness, Georgia State University. I would like thank Asmerilda Hitaj, for her comments and opinions. Email:
m.noori@campus.unimib.it
Department of Economics, Management and Statistics (DEMS), University of Milano-Bicocca, Piazza dell’Ateneo
Nuovo, 1, 20126 Milano MI, Italy.
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A large portion of these studies are conducted by a model-free approach directly by VAR. On
the other side, models based on higher moments have not received enough attention. Fang
& Lai (1997) in a seminal work state that, systemic skewness and kurtosis are a contributing
factor in explaining expected return, in addition to the systemic variance. Smith (2007) finds
that coskewness is significant factor in explaining the cross-section of asset returns in a three-
moment CAPM model. He points to the time-varying nature of coskewness risk premia, and
finds that a pricing model equipped with coskewness factor outperforms conventional three-
factor or four-factor models.

Several other works including, Vanden (2006), Guidolin & Timmermann (2008), J. Yang et al.
(2010), C.-Y. Yang & Chen (2009), Chang et al. (2013), and Chan et al. (2018) strongly support
the role of higher co-moments in financial assets’ return and risk premia. Chiang (2016) stud-
ies bond skewness and coskewness, emphasizes the importance of modeling coskewness. He
also finds that skewness, and coskewness are time-varying. Högholm et al. (2011) show that
factor loadings on coskewness and cokurtosis are time-varying, asymmetric, and state depen-
dent. In this regard, they oppose employing linear, or regime switching models, and mention
that separating the market conditions to bull and bear cannot capture the asymmetric effect of
higher moments effects. These findings are in line with the fact that, during the regimes the
conditional correlations and variances are supposed to remain constant.

Xiong et al. (2014) show that tail risk is compensated for equity funds unlike volatility (beta).
Heath (2019) states that oil price shocks have strong effect on economic activities. He points
to the fact that previous models developed in VARs, miss variations in oil price risk. Oil price
premium is largely time-varying and pro-cyclical. The oil shocks create large impact during
economic expansion. He also pinpoints an important of using futures price which is, capturing
all types of demands, from speculators to true hedgers, so oil futures price is truly representa-
tive of all oil market agents. It is a stylized fact that futures market (especially for oil) is deeper
(more active than spot market) and has a time-varying term structure which helps forecast spot
prices. Christoffersen et al. (2021) propose a strategy to estimate the price of co-skewness and
co-kurtosis, emphasizing the inefficiently of conventional approaches that rely on two-stage
cross-sectional or Fama-MacBeth regressions. Their model is based on index options. In two
works by Bollerslev et al. (2009) and Bollerslev et al. (2014), variance risk premium is identified
as the best predictor of market returns. Dittmar (2002) states that kurtosis measure the like-
lihood of extreme values and co-kurtosis captures the sensitivity of asset returns to extreme
market return realizations. In this regard, kurtosis includes both systemic and non-systemic
risk (noisy part), while cokurtosis is truly representative of the systemic risk.

To the knowledge of the author, there is no research studying the stock-oil comovements and
dependencies by means of higher moment conditional coskewness, and cokurtosis. In this
regard, this paper tries to fill the gap for the fundamental stock-oil literature and their tail
dependencies using conditional coskewness and cokurtosis, with specific focus on the interac-
tions between these assets during a long period from April 1983 up to Dec 2021. Unlike most
studies which employ spot prices for WTI, we utilizes futures prices, which are truly sensitive
to shocks and news, a good characteristics of futures market, and a perfect setting in terms
of risk hedging. Moreover we study the effect of macroeconomic shocks on the conditional
comoments using three famous indices, CBOE VIX representing fear level, Baker et al. (2016)
economic policy uncertainty (EPU) which represents uncertainty about market condition, and
the thorough Aruoba et al. (2009) index of expectation on real economic condition (ADS hence-
forth). We emphasize the unique feature of the three macroeconomic indicators in having high
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frequency daily data. A feature which is very important in studies on volatility modeling,
volatility/shock spillover, and systemic risk.

The fundamental literature on stock-oil relationship finds that since the 2008 global financial
crisis (GFC) the dynamics of the stock market and crude oil price has changed from a negative
relationship to a positive relationship. Several papers attribute the phenomenon to aggregate
growth shocks (Hitzemann, 2016), slow down in global economic activity (Bernanke, 2016),
the sovereign wealth funds speculative activity (Mohaddes & Pesaran, 2017), or oil demand
shocks (Ready, 2018). The findings of this paper, based on conditional beta, coskewness, and
cokurtosis provides further evidence for the this phenomena. It is essential to note that, unlike
past studies, this paper employs economically sound measures to talk about the comovements,
sensitivity, and spillovers. Our measures of comovements are based on realized volatility calcu-
lated on historical data, have higher frequency (daily data), and are time-varying. The coskew-
ness and cokurtosis can be viewed as measure of sensitivity to tail events as well. We calculate
the time-varying conditional betas, coskewnesses, and cokurtoses based on asymmetric dy-
namic conditional correlation (ADCC) GJR-GARCH (Glosten et al., 1993, Engle, 2002,Cappiello
et al., 2006) accommodating the asymmetric responses between and within the financial series.
Then to study the impact of different phases of business cycles, macroeconomic variables, and
financial crashes on the conditional comoments, we rely on time-varying parameter vector au-
toregression (TVP-VAR) by Primiceri (2005) to analyze the time-varying impulse responses of
the three macroeconomic indicators.

The contribution of this paper are: We calculate alternative, economically sound measures of
comovements for stock-oil relationship. The conditional beta, coskewness and cokurtosis have
a time-varying nature (for both equity and oil market) and show a new phase of stronger re-
lationship between the two markets since the 2008 global financial crisis (GFC). WTI shows
greater sensitivity to S&P 500’s volatility and tail events than its counterpart based on the three
conditional comoments. Since GFC: (i) S&P 500 beta shows much more stronger positive re-
sponse to VIX shocks, while on the contrary WTI shows larger and stronger negative response
to VIX, (ii) conditional cokurtosis impulse responses show patterns similar to betas, with eco-
nomic uncertainty having greater impact on the stock-oil dependencies, (iii) shocks from VIX,
economic uncertainty, and expected business condition, take longer to impact WTI conditional
cokurtosis, while they tend to be more transient for S&P 500 cokurtosis, and (iv) shocks to ex-
pectations on business condition creates stronger (ADS), more volatile and, more asymmetric
response across all conditional comoments measures than VIX or economic policy uncertainty.
The paper is organized as follows. Section 2 describes the data, discusses the theoretical model
as well as the empirical approach. Section 3 presents the results and discusses. Section 4 con-
cludes.

2 Method & Data

In our empirical analysis, we first model the conditional coskewness and cokurtosis between
WTI continuous time futures price index1, and S&P 500 index from April 1983 to December
2021 using daily data. Table 1 present the descriptive statistics for our datasets. We calculate
the daily returns as Ln( Pt

Pt−1
) where Pt refers to index price at time t. Note that, all returns are

in excess of the one-month TBill rate.
1Based on nearest-to-maturity price
2ADF test with constant, linear and quadratic trend

3



Table 1: Descriptive statistics of the dataset

Mean SD Skewness Robust Skewness Kurtosis Robust Kurtosis ES Jarque-Bera ADF2

S&P500 0.00035 0.011 -1.22 -0.035 30 4.41 0.027 FALSE -17.5
WTI Futures 0.00010 0.024 -1.90 -0.028 50.6 3.99 0.056 FALSE -17.8

We employ three important macroeconomic indices including CBOE volatility index (VIX) (also
know as gauging stock market fear level), Baker et al. (2016) EPU, and Aruoba et al. (2009)
real business conditions index3. The EPU uncertainty index4 developed by Baker et al. (2016)
which is a true uncertainty measure, this news-based index uses newspaper archives from the
Access World News Bank service on words related and/or associate with the word uncertainty.
Several studies show significant negative relationship between EPU and macro variables like
growth rates and employment rates. EPU is shown to be able to explain large fluctuation for eq-
uity market like S&P 500. The Aruoba et al. (2009) ADS daily index5 is based on expectation on
real business conditions which is computed on economic variables like: weekly initial jobless
claims; monthly payroll employment, monthly industrial production, monthly real personal
income less transfer payments, monthly real manufacturing and trade sales, and quarterly real
GDP.
The index has a zero mean, with positive values as progressively better-than-average condi-
tions, and negative values as progressively worse-than-average conditions. Figure 1 shows the
macroeconomic indices series. Note that in studying the impact of macroeconomic factors’ on
the conditional coskewness and cokurtosis, the data starts from 1990 due to the availability of
the macroeconomic data. The giant impact of COVID-19 in the beginning of the 2020 is distinct
and phenomenon in figure 1 given. Note that, the unique feature of the three macroeconomic
indicators is that they are available at daily frequencies, which complements our stock-oil daily
dynamics.

2.1 Conditional Coskewness & Cokurtosis: Alternative Tail Risk Exposure

The importance of higher co-moments in asset pricing primarily was introduced by Samuelson
(1975), and Rubinstein (1973), which later on becomes a stylized fact in asset pricing models
proposed by Kraus & Litzenberger (1976), Fang & Lai (1997), and Harvey & Siddique (2000).
CAPM a two-moment (mean-variance) asset pricing model states that, given the risk free rate
r f , the expected gross return Ri,t of an asset i at time is generated by the expected market pre-
mium (or excess return) Rm,t through asset i’s conditional covariance with the market scaled
by the market’s variance σ2

m,t that is :

E(Ri)− r f =
Cov(Rm, Ri)

Var(Rm)
Et(Rm) (1)

Note that the covariance Cov(Rm, Ri) is equal to E[(Ri − R̄i)(Rm − R̄m)] with R̄i and R̄m refer-

ring to the mean value of the asset i’s, and market returns. Quite often
Cov(Rm, Ri)

Var(Rm)
is defined

as the conditional βi,t of the asset i with the market. Now let’s provide a broader view of the
CAPM foundations. In the absence of arbitrage given the information set Ωt available to an
investor, and at time t the asset i’s gross return ri,t+1 , the stochastic discount factor mt+1 is

3Note that the raw historical series for all indices are stationary at 1%
4The data is available at federal reserve bank of Saint Louis
5The data is available at federal reserve bank of Philadelphia
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Figure 1: Macroeconomic indices

defined as (Cochrane, 2009):

E[mt+1Ri,t+1 |Ωt] = 1 (2)

If the canonical assumption of CAPM are met including Gaussian distribution of returns, or
quadratic utility function for an investor (among other assumptions), then the stochastic dis-
count factor (SDF) mt+1 can be formulated as a linear function of market return, or:

mt+1 = a + btRm,t+1 (3)

However given the evident failure of assumption of CAPM model including the Gaussian dis-
tribution of the returns, quadratic utility function6 etc, the SDF has a nonlinear relationship
with the market return Rm,t+1, and can be specified with a third-order polynomial of market
return as:

mt+1 = a + btRm,t+1 + ctR2
m,t+1 + dtR3

m,t+1 (4)

Following Fang & Lai (1997) the CAPM is extended to account for the coskewness and cokur-
tosis in a four-moment pricing model:

E(Ri)− r f = ζ1Cov(Rm, Ri) + ζ2Cov(R2
m, Ri) + ζ3Cov(R3

m, Ri) (5)

Where Cov(R2
m, Ri), and Cov(R3

m, Ri) capture the time-varying conditional coskewness and
conditional cokurtosis respectively. It is noteworthy to state that conditional coskewness and
cokurtosis capture what conventional measures of return comovements cannot, because they

6Quadratic utility requires investors to have increasing absolute risk aversion, which is counter intuitive
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are based on the comovements and sensitivity to the tail events similar to the expected shortfall.
It is evident that in this equation, our measures of coskewness and cokurtosis are not scaled,
so in order to arrive at a correct inference of for the relevant tail risk measures, we must scale
these covariances. In this regard we have that:

Betai(βi) =
Cov(Rm, Ri)

Var(Rm)
Coskewnessi(Γi) =

Cov(R2
m, Ri)

[Var(Rm)]1.5 Cokurtosisi(Λi) =
Cov(R3

m, Ri)

[Var(Rm)]2

(6)
From left, we get the famous asset’s β after dividing the Cov(Rm, Ri) by the market variance
Var(Rm), and for the conditional coskewness and cokurtosis of the asset i with the market,
we divide Cov(R2

m, Ri) and Cov(R3
m, Ri) by the market’s conditional skewness [Var(Rm)]1.5 and

kurtosis Var(Rm)2.
Now after scaling covariances we arrive at the following model which is starting point in our
empirical investigation:

E(Ri)− r f = ζ ′1βi,t + ζ ′2Γi,t + ζ ′3Λi,t (7)

GARCH approach, is superior to regime switching model employed in many of the past stud-
ies, like Guidolin & Timmermann (2008), J. Yang et al. (2010), Chiang (2016), and Chan et al.
(2018) in that the correlations covariance are time-varying and not constant. Francq & Zakoian
(2019) state that while Markov switching regime models are flexible, they are only an approx-
imation of the data generating process. Additionally in our empirical model, we consider the
role of asymmetries (leverage effect) within and in-between the assets, in addition to our Stu-
dent’s t distribution in estimations given the fat-tailed return series7. None of the above studies
address those issues in their work. Our method in this paper is also superior to rolling regres-
sion, in that we take into account the stochastic nature of the conditional comovements in the
time-varying covariances, and there is no arbitrary choice of an interval, nor neglecting some
part of the data as in rolling regression methods. As follows, we build the varibales based
on realized volatility (rather option prices) which is more informative of the underlying data
generating process.
In order to compute the time-varying higher comoments, we employ asymmetric dynamic
conditional correlation ADCC-MGARCH process by Cappiello et al. (2006) and a GJR(1,1) of
Glosten et al. (1993) for individual volatility processes for each time series in the ADCC pro-
cess. In this regard we start by computing the following mean equation model for each time
series:

Rwti,t = φwti + εwti,t (8)

Rsp,t = φsp + εsp,t (9)

Where φwti and φsp are the relevant constants and εwti,t and εsp,t are the relevant innovations.
We apply ADCC− GJR− t on this equation, in order to compute the Cov(Rsp, Rwti). To com-
pute the Cov(R2

sp, Rwti) and Cov(R3
sp, Rwti), we substitute in the above equation R2

sp and R3
sp

respectively in equation 8. ADCC model is parsimonious in addition to being able to capture
the effects of asymmetry in comovements between the time series. Also, a multivariate Stu-
dent’s t distribution accounts for the fat-tailed series. We scale those estimated conditional
covariances by the conditional variance of the S&P 500 using a univariate GJR(1,1).

7Francq & Zakoian (2019)encourage the use of heavy-tailed marginal distributions when estimating long return
series with GARCH processes, to avoid a possible spurious strong volatility persistence
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In order to compute the time-varying dynamics of the covariances in this study, we employ
ADCC-GJR-t Cappiello et al. (2006). The ADCC model is built on the DCC model of En-
gle (2002). Dynamic conditional correlation models, are an intelligent response to the het-
eroskedasticity of the disturbances. The asymmetric DCC can capture the potential asymme-
tries between comovements of the assets, in addition to have stronger statistical properties. The
asymmetric GJR-GARCH process of Glosten et al. (1993) reads as:

h2
i,t = ωi + αie2

i,t−1 + β′ih
2
i,t−1 + γie2

i,t−1 Ii,t−1 (10)

where I =
{

1 i f ei,t−1 < 0
0 Otherwise (11)

Now that we have computed the conditional variances in the previous step, we need to com-

pute the standardized errors by ε i,t =
εi,t

hi,t
and the time-varying covariance matrix Ht. We state

that the vector of time-varying errors follows Et | ∆t−1 ∼ Student′s t(0, Ht,v) where the time-
varying covariance matrix Ht = DtPtDt consists of the time-varying correlation matrix Pt and
the time-varying diagonal matrix of the standard deviations Dt. The time-varying correlation
matrix Pt reads as:

Pt = diagQt
−1QtdiagQt

−1 (12)

where:

Qt = (P̄− a2P̄− b2P̄− gN̄) + a2(εt−1ε′t−1) + g2(nt−1n′t−1) + b2Qt−1 (13)

Where P̄ = E[εt−1ε′t−1] is the unconditional correlation matrix of the standardized errors, and
N̄ = E[nt−1n′t−1]. Further the effect of negative shock is absorbed by the variable nt which can
be expressed as a Hadamard product with the following characteristics:

nt = I[εt−1] ◦ εt−1 =

{
εt εt < 0
0 εt ≥ 0

(14)

Where I[εt−1] is a K × 1 indicator function. The positive definiteness of the Qt is guaranteed

only if (a2 + b2 +
1
2

g2) ≤ 1. We employ a multivariate Student’s t for to estimate the parame-
ters of the time-varying correlation matrix Qt. In the following table we report the estimated
parameters of a GJR(1,1) process for each of the parameters.

Table 2: Volatility equation parameters

S&P500 p-value WTI futures p-value S&P5002 p-value S&P5003 p-value WTI2 futures p-value WTI3 futures p-value

φ ∗ 104 0.02 0.00 0.00 0.57 0.1 0.89 0.1 0.13 1.9 0.14 0.4 0.51
ω ∗ 104 0.02 0.00 0.02 0.31 0.02 0.00 0.3 0.01 0.6 0.00 144 0.00
ARCH (α) 0.015 0.03 0.062 0.00 0.057 0.00 0.027 0.20 0.07 0.00 0.068 0.00
GARCH (β′) 0.896 0.00 0.911 0.00 0.92 0.00 0.891 0.00 0.924 0.00 0.826 0.00
GJR (γ) 0.131 0.00 0.047 0.00 -0.004 0.79 0.148 0.00 -0.039 0.49 0.167 0.00

2.2 Conditional Coskewness and Cokurtosis Risk Premia: GMM approach

After estimating the empirical model, we employ GMM to study the effect of the higher condi-
tional co-moments for our two variables. It is crucial to mention that, as our variables are gen-
erated ones, there are a few methods to deal with the endogenous inherent in our conditional
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higher co-moments. In this regard, some authors also orthogonalize the variables onto one
another, which is not perfect practice compared to the GMM. Given that we are interested in
studying the response of conditional comovements to macroeconomic variables through time,
we do not impose any further constraints or limits on our initial dual multivariate GARCH
processes in the equation 8 and 9. In the later section, we employ local time-varying parameter
vector autoregression (TVP-VAR) which is a perfect tool for studies on potentially nonlinear
comovements and time-varying impulse responces.

2.3 Fear, Uncertainty, and Expectations: TVP-VAR with stochastic volatility

In order to study the impact of the three daily macroeconomic variables on conditional coskew-
ness and a TVP-VAR (Primiceri, 2005) is employed. The method belongs to the non-linear VAR
class (Primiceri, 2005, Kilian & Lütkepohl (2017)) and is able to capture the asymmetric effect
of positive vs negative structural shocks either by the state of the economy or by the vari-
ables and lags. Additionally this model is developed to provide time-varying VAR coefficients
(based on some stochastic process) and impulse response functions (IRFs) which is suitable to
our analysis of the conditional higher comoments that encompasses several decades of differ-
ent economic policies and boom/bust. The evident existence of the different economic regimes,
change in the condtional volatility of both oil and stock market (refer to the results) all refer to
the smooth structural change (Primiceri, 2005, Nakajima et al., 2011 ,Del Negro & Primiceri,
2015; Kilian & Lütkepohl, 2017). Following Primiceri (2005) the TVP-VAR model is derived
from structural VAR model, and reads as follow for a multivariate case:

Y t = νt + A1,tY t−1 + ... + Ap,tY t−p + ut (15)

Where Y is a n × 1 vector of endogenous variables, νt is a n × 1 vector of coefficients that
multiply the constant terms, the coefficients A1,t, i = 1, ..., p are dependent on time. The error
term ut is assumed to be a zero-mean white noise process with time-varying covariance matrix,
that is ut ∼ (0,Σu,t). To facilitate structural analysis, the error covariance is decomposed to:

Σu,t = B−1
t Σw,tB

′−1
t (16)

Where Σw,t = diag[σ2
1,t, ...,σ

2
k,t] is a diagonal matrix with the variances of the structural errors,

and B−1
t may be a lower-triangular matrix as follow:

Bt =


1 0 · · · 0

b21,t 1 · · · 0
...

...
. . .

...
bk1,t · · · bkk−1,t 1


Restrictions on Bt can be used to uniquely identify the structural shocks or wt = Btut, and using
it, we can rewrite the model in structural form as:

Y t = νt + A1,tY t−1 + ... + Ap,tY t−p + B−1
t ut (17)

If we gather all all the VAR slope coefficients in the vector αt = vec[νt, A1,t, ..., Ap,t] and the
unrestricted elements of the Bt in bt = [b21,t,b31,t,b31,t, · · · ,bk1,t, · · · ,bkk−1,t]

′ then the vector bt
is the 1

2 K(K − 1)-dimensional vector of elements below the main diagonal of Bt which is row-
wised such that the parameters for each individual equation are grouped together. Now having
σt = [σ1,t, · · · ,σk,t]

′ as the vector of wt’s standard deviations, we can specify the dynamics of the
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time-varying vectors of coefficients as random walk processes for αt and bt, and a geomet-
ric random walk for σt, restating, the model allows for stochastic volatility with considerable
persistence:

αt = αt−1 + ηα
t (18)

bt = bt−1 + ηb
t (19)

logσt = logσt−1 + ησ
t (20)

Summing up, the co/variance matrix error terms of the model equations is block diagonal as:

Cov


wt
ηα

t
ηb

t
ησ

t

 =


Σw,t 0 0 0

0 Σα 0 0
0 0 Σb 0
0 0 0 Σσ


Where Σα, Σb, and Σσ are the positive definite covariance matrices of ηα

t , ηb
t , and ησ

t respectively.
Note that, the error terms are independent of one another. Assuming Zt−1 ≡ (1,Y t, · · · ,Y t−p)′

the initial VAR in equation 15 becomes:

Y t = (Z′t−1 ⊗ Ik)αt + ut (21)

With the symbol ⊗ referring to Kronecker product. In the above equation (eq. 21) and the ran-
dom walk process of αt (eq. 18) are basically a state-space model with measurement equation
(eq. 21) and transition equation (eq. 18). Generally there are two ways to estimate this model,
one is maximum likelihood estimation, and Bayesian estimation based on the Markov Chain
Monte Carlo (MCMC), which the latter is employed given the issues with maximum likelihood
estimation.

3 Result & Discussions
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Figure 2: Conditional variances 1983-2021

Figure 2 shows the conditional variances for S&P 500 and WTI futures. The giant impact of
the recent financial crisis relevant to COVID-19 pandemic period is significantly greater than
any crisis during the last four decades for both of the variables, especially for S&P500. While
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COVID-19 effect shock on oil volatility is comparable to the Iraq-Kuwait war in early 1990s.

Figure 3, and 4 exhibits the conditional beta, coskewness and cokurtosis of S&P 500 and WTI fu-
tures respectively. Figure 4 shows that from 1983 to global financial crisis (GFC) of 2008, WTI’s
conditional beta has had a zero mean overall with two salient negative fluctuation around the
1987 black Monday crisis and Iraq-Kuwait war, while after GFC the sensitivity of the WTI to
the S&P 500 finds a new positive mean, such that whenever the political climate becomes un-
stable around the world this sensitivity increases positively, representing the fact that the two
market are getting more connected than before. In addition, this emerging pattern is a source
of concern for investors who used to benefit from diversification by the two asset classes.. We
do not witness any effect of financialization era in our study. The conditional cokurtosis of
WTI (figure 4) evidences the same pattern. The reaction of WTI to S&P 500 tail events is more
stronger since GFC, and the strongest as of COVID-19 emergence in early 2020.
Figures 5-7 show the impulse responses of our conditional comoments for S&P 500 (panel a),
and WTI futures (panel b) to a 1% permanent increase in the positive shock in VIX, economic
policy uncertainty (EPU), and the expectation on business condition (ADS) indicators. There
are three intervals, a 6-day response, a 12-day response and a 24-day response 8. Overall, the
impulse responses show time-varying and sometimes asymmetric behavior across our long
dataset. Looking at figures 5-7, we realize that there can three distinct periods of economic ac-
tivity, one from 1990-2000, another from 2000-2008, the other initiates from 2008. Another pat-
tern relates to the responses of WTI conditional comoments to shocks from VIX, EPU, and ADS.
Compared to S&P 500, the 24-day response is more visible and stronger than 6-day responses,
while S&P 500 conditional comoments respond much quicker to shocks from the macroeco-
nomic variables. Finally we also mark the increase gamut of the impulse responses to the three
macroeconomic variables since the 2008 GFC in line with the literature. There are two evident
asymmetric response to shocks as in figures 5, and 7. We witness that the 6-day and the 24-day
response of the S&P 500 beta in the beginning of COVID-19 are asymmetric, although overall
impulse responses show asymmetric response during the whole sample period. The 6-day re-
sponse is positive while the 24-day response is negative. In addition in panel b of the figures 5
and 7, WTI has negative response to the positive shocks in the macroeconomic variables since
GFC. This different compared to the 1990-2008 time period.

As in figures 5 and 6, a shock to VIX generates quick and strong response in the conditional
beta and coskewness of both S&P 500 and WTI. On the other side, macroeconomic shocks
create stronger 24-day responses on conditional cokurtosis values in figure 6. ADS which is
the expectations on business condition index seem to be the macroeconomic variable with the
largest impact on all conditional comoments, while economic policy uncertanity (EPU) seem to
create stronger effect on the conditional comoments since GFC. This may mark the effect of the
sentimental investment in the market.

8Note that, in experimenting with longer time intervals for the impulse responses, the responses were negligible
to nonexistent above 50 days, which is inline with the nature of our study.
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Figure 3: Conditional comoments of S&P 500
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Figure 4: Conditional comoments of WTI Futures
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(a) S&P 500 beta impulse responses

(b) WTI futures beta impulse responses

Figure 5: Time-varying impulse responses for beta Jan 1990 - Dec 2021
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(a) S&P 500 cond. coskewness impulse responses

(b) WTI futures cond. coskewness impulse responses

Figure 6: Time-varying impulse responses of cond. coskewness Jan 1990 - Dec 2021
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(a) S&P 500 cond. cokurtosis impulse responses

(b) WTI futures cond. cokurtosis impulse responses

Figure 7: Time-varying impulse responses of cond. cokurtosis Jan 1990 - Dec 2021
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