
Volatility in Solar Renewable Energy Certificates:
Jumps and Fat Tails

Charles F. Mason∗ Neil A. Wilmot†

December 19, 2021

Abstract

Economies are increasingly adopting renewable energy certificates as a policy
mechanism to support the transition away from reliance on fossil fuels. We
investigate the price of solar renewable energy certificates (SRECs) in New
Jersey, allowing for the potential presence of jumps and time-varying volatility.
We find that both features play an important role in the stochastic process
describing SREC price returns. We also simulate the implied probability that
at least one jump would occur in any given month. These implied probabilities
indicate that jumps played a consistently important role in both SRECs and
electricity prices. Jumps in SRECs appear to have been particularly noteworthy
between late 2011 and early 2013, a period when electricity prices in New Jersey
were relatively high. This result hints at the potentially important role of
market structure in driving fat tails in price returns.
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1 Introduction

“Change is inevitable, but transformation is by conscious choice.” Amara (2014)

Renewable energy sources form the centerpiece of a strategy aimed at reducing green

house gas (GHG) emissions. Indeed, a fundamental transformation of the energy

system is likely to be required if mankind is to limit potential future damages from

climate change (Nemet, 2019). An important part of this energy transition is likely

to entail widespread adoption of renewables in general, and most likely solar power

in particular.1

Solar power generation produces less GHG emissions than electricity deriving from

the combustion of fossil fuels. According to Hosenuzzamana et al. (2015), approx-

imately 3.6x104 TW of power is available to us from the sun, while global power

consumption in 2018, was 23 TW, a 76% increase since 2000. The Energy Informa-

tion Administration (EIA) forecast that solar power, which only accounted for 3% of

US generation in 2020, will grow to 20% by 2050 (U.S. Energy Information Admin-

istration, 2021). Indeed, between 2014 and 2020, solar generation from photovoltaic

(PV) has increase by 389%, in the US. Such growth has been driven not only by

increases in the Utility scale generation (475%), as the small scale generation has also

experienced significant growth (271%).2

1 (Nemet, 2019, p. 14) writes: “[m]ajor changes are needed to adapt energy systems in order to
ensure that PV [photovoltaic] is a central, rather than peripheral, component of energy systems.”

2 The EIA defines utility-scale solar to be generation of at least 1 MW of capacity, while small-
scale solar generation would be less than 1 MW of capacity. For a thorough discussion of the various
factors that have contributed to the rise of solar energy see Nemet (2019).
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The pace of such an energy transition is a hotly debated topic. When technological

improvements are gradual improvements, energy transitions may take “a substantial

amount of time.” (Sovacool, 2016, p. 205). Large up-front investments are also likely

to retard transition (Grubler et al., 2016). On the other hand, elicitation of “expert

opinions” often points to a strong tendency to underestimate the pace of technological

improvements in solar energy, and thus the speed of transition (Verdolini et al., 2018).

Finally, the potential for technological lock-in to older, dirtier technologies – partic-

ularly in developing economies – has the potential to retard the energy transition

(Fouquet, 2016a).

Numerous policy and regulatory frameworks have been proposed to incentivize the

instillation of renewable energy, to achieve long term reductions in carbon emissions.

Many US states have introduced a renewable portfolio standard (RPS) to stimulate

the production of energy from renewable sources. One policy, that can be used to

comply with the RPS mandate, is the use of ‘renewable energy certificates’ (RECs).

These RECs require a tradable certificate be issued to the generator of each MWh

of renewable energy, who is then allowed to sell the REC in a market. New Jersey

(NJ) was an earlier adopter of this system. Having adopted ambitious future targets

for solar generation, NJ instituted a market for solar renewable energy certificates

(SRECs), production credits awarded to owners of grid-connected solar PV systems

(Coulon et al., 2015).

Like many sources of renewable energy, the lion’s share of the cost associated
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with a solar project is born up front. As the comments in the preceding paragraph

underscore, this raises the potential for slower adoption of solar technology. With

large up-front costs, the economic benefits of an investment is substantially driven

by the flow of earnings after installation, be they in the form of reduced energy bills

(for homeowners), credits from adopting the new technology – such as SRECs – or

revenues from electricity sales (Davis and Owens, 2003, p. 1598). This benefit flow

must be compared against the (sunk) cost of investment. When either benefits or costs

are uncertain, the problem becomes on of “investment under uncertainty” (Dixit and

Pindyck, 1994).

The basic idea in this type of problem is that at any point in time the decision-

maker may choose to invest immediately or to delay investment. If the payoff to the

investment can either increase or decrease, as will naturally occur in the presence of

uncertainty, delaying allows the decision-maker to reduce the potential for ex post

regrets after making an investment that falls in value. In this way, delaying the

investment can generate an increase in expected payoff; this increase in value is akin

to the value associated with a financial option.3 A key point is that factors that

increase the option value would strengthen the incentive to delay (Dixit and Pindyck,

1994; Kellogg, 2014). These factors include changes in the underlying variance of the

source of uncertainty, but they also can include features that contribute to fat tails

in the “stochastic process”. Such fat tails can arise because of time-varying volatility

3 Many applications in this genre refer to the investment under uncertainty problem with the
moniker “real options”.
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or the presence of unanticipated dramatic changes, sometimes called “jumps”.

Our goal in this paper is to formally assess the empirical importance of jumps and

time-varying stochasticity in SREC prices. Using maximum likelihood estimation, we

evaluate the percentage change in three key energy prices: SRECs, electricity spot

prices and natural gas spot prices. We find that allowing for jumps and time-varying

volatility provides statistically important improvements over models which do not

account for such features, for each of these energy prices. The preferred econometric

specification, which allows for both time-varying volatility and jumps, can then be

used to estimate the implied probability that at least one jump would occur over a

particular time interval (in our application, one day). Upon constructing these jump

probabilities, we find that the estimated jump probability for SREC prices is large

at a number of points in time, in particular from late 2011 to early 2013 – a period

of relatively high electricity prices in New Jersey. At the same time, the implied

probability of jumps in the natural gas prices were much smaller. One important

distinction between the markets for SRECs on the one hand and natural gas on

the other is the thickness of the market: the volume of trades in SRECs was much

smaller, and the market much less mature, than the market for natural gas. This

contrast raises the possibility that a thinner market, which one might expect to be

less intensely competitive, might be tied to a greater tendency for jumps. Because

such a tendency raises the option value of waiting to invest, one conjecture is that

tighter markets could be associated with a slower pace of investment – which in this
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application suggests an additional factor that could retard the transition to solar

power.

2 Literature Review

Increasing interest from state and local policymakers in the development of renew-

able energy markets has led to the rapid adoption of renewable portfolio standards

(RPS). Many of the state RPS laws include a “solar carve-out”, which mandates

a percentage of power supplied derives from solar generation sources. Hence, RPS

creates demand for renewable energy and stimulates investment in renewable energy

generation. Krasko and Doris (2013) reports that, between 1996 and 2007, more

than half of U.S. states had formalized RPS. The authors examine the use of state

policy as a tool to support the development of distributed generation photovoltaic

(PV) markets. Using cross sectional data, the authors find evidence suggesting that

market supporting policies can be effective at increasing overall PV capacity.

SRECs are financial instruments, created by a state, that are granted to producers

of solar power when they generate electricity from solar sources in certain states and

under certain conditions (Cohen et al., 2021). SRECs have become an important tool

for increasing the proportion of solar energy collected for power generation. However,

the nascent nature of this market means that the SREC market experiences signif-

icant price volatility. Lee et al. (2017) report eight states in the U.S. have SREC

markets, with Massachusetts and New Jersey showing the highest residential average
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retail prices (2013). The higher expected price makes residential installation more

attractive, allowing residents to both offset home electricity use, and sell excess gen-

eration into the SREC market. Yet, the high volatility causes uncertainty of profits

and discourages the installation of solar PV systems. Using county level data for 13

Northeastern states, Crago and Chernyakhovskiy (2017) examine the impact of pol-

icy incentives for residential PV capacity. These authors report that, while rebates

are a highly significant predictor of solar capacity additions, SREC prices were not

significant. They further argue that the lack of significance may be due to the volatil-

ity in the prices during the period studied. Under North Carolina’s RPS compliance

market, installation of solar power has only enabled a few large solar power producers

to compete with utility companies to finance, install, and operate solar generating

systems (Gaul and Carley, 2012).

The consequences of compressed investment from heightened price volatility is

a well documented in the energy literature. Pindyck (2004) examines the behavior

of volatility in both the natural gas and oil markets, arguing that volatility alters

the incentives to invest in production facility, storage, and transport infrastructure.

Indeed, volatility is a key element for the pricing of derivatives, hedging strategies

and the decision to invest in physical capital (real options). Relatedly, Efimova and

Serletis (2014) show that GARCH models explain price volatility for crude oil, natural

gas and electricity. Mason and Wilmot (2016a) show that delaying investment in

physical assets could occur because of discontinuities – or “jumps” – in the relevant
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market price. Similarly, in an analysis of the market for renewable identification

numbers (RINs), Mason and Wilmot (2016b) show that a stochastic model which

includes jumps provides a compelling explanation of the data. Their results indicate

the statistical importance of incorporating jumps in a model of price returns, and the

delaying effect such jumps have on undertaking capital investment.

The empirical importance of jumps has been documented for a variety of energy

markets, including oil (Askari and Krichene, 2008; Gronwald, 2012; Postali and Pic-

chetti, 2006; Wilmot and Mason, 2013), natural gas (Benth et al., 2008; Mason and

Wilmot, 2016a), carbon permits in the European Union trading market (Alberola

et al., 2008; Chevallier and Sévi, 2014; Daskalakis et al., 2009; Hammoudeh et al.,

2014), and coal (Wilmot, 2016; Xiaoming et al., 2012).4 A natural consequence of

the jumps in energy commodity prices is that electricity spot prices can also exhibit

jumps (Benth et al., 2008; Huisman and Mahieu, 2003). The jumps in these energy

prices can be large: Huisman and Mahieu (2003) show that daily jumps in electricity

prices can be on the order of 30%. Similarly, Thompson et al. (2009, p. 227) observe

“high [natural gas] price spikes far outside normal seasonal equilibrium levels;” and

Chen and Forsyth (2010, p. 359) argue it “is not uncommon to see spot gas price

4 Indeed, Chevallier and Ielpo (2014) argue that many energy prices are subject to these effects.
These energy markets can sometimes be correlated Gonzalez-Pedraz et al. (2014); Asche et al.
(2006) and Panagiotidis and Rutledge (2007) demonstrate a link between UK natural gas prices and
European crude prices. On the other hand, (Brown and Yücel, 2008, p. 48) argue that there has
been a fundamental change in the relationship between oil and gas prices after 2000. And while the
data from 2000 – 2006 is reflective of emerging technological trends, it predates the major burst in
gas production that followed the widespread application of fracking. With prices subject to jumps,
it is not unexpected that related derivatives would also exhibit jumps – for example, the convenience
yield associated with holding crude oil stockpiles (Mason and Wilmot, 2020).
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jumps ... as much as 20% in a single day.”

Similar to this earlier literature, there is evidence that the SREC market in NJ

has exhibited volatile price dynamics (Coulon et al., 2015); this has the potential

to reduce investments in solar power generation due to the increased risk from large

price swings. These authors propose a stochastic model to examine the behavior

of SREC market prices, which includes a feedback mechanism for power generation

decisions. Utilizing monthly data, over the period July 2008 through March 2014,

they model the historical dynamics of SREC prices. The model requires numerical

solution algorithm, which the authors argue must be carefully chosen, as the historical

SREC price behavior is extremely challenging to capture or understand in a classical

econometric price model.

Understanding the nature of these price movements has important implications

for large-scale investment decisions, particularly when these decisions entail up-front

costs that are costly (or impossible) to reverse. Here too there is a long tradition in the

literature of analyzing investment decisions when key ingredients, such as underlying

prices, are stochastic. Much of this literature follows the seminal work of Dixit and

Pindyck (1994). A key insight here is that there is a value to waiting – reflecting the

potential for the gain from investing to increase over time; this value is referred to as

the “option value” of delaying investment. In general, the larger is the option value

from delaying, the later will the investment be undertaken. Of direct relevance to our

analysis, Torani et al. (2016) evaluate a model of investment in solar projects under

8



uncertainty. Their model assumes solar installation prices follow geometric Brownian

motion, though they allow for neither GARCH-style volatility nor jumps in prices.5

We do allow for both GARCH and jumps in our model of SREC prices; we argue

below that both aspects are statistically important.

These results have clear implications for a broad range of decisions involving re-

newable energy, from smaller decisions (such as a homeowner’s decision to install

rooftop solar) to larger decisions (such as a utility’s decision to install a substantial

solar farm). The implications are particularly significant for very large decisions.6

There is a robust literature that has studied problems of investment under uncer-

tainty; many of these papers study applications to energy and climate economics. A

number of authors have studied applications to non-renewable energy resources, such

as oil or gas, often with a focus on production from a single well. A representative

sample of these papers includes Almansour and Insley (2017); Conrad and Kotani

(2005); Gonzalo Cortazar and Jaime Casassus (1998); Davis and Lund (2018); Insley

(2017); Kellogg (2014); Mason (2001). Applications that corroborate the empirical

validity of the real options framework include Muehlenbachs (2015) for crude oil in

Alberta and Paddock et al. (1988) for offshore oil and gas leases. The broad con-

sensus from this literature is that the development of energy resources can often be

characterized in a fashion that is consistent with real option theory. In particular, the

5They also argue that electricity price uncertainty plays an important role in impacting the
volatility of solar markets.

6 For example, the cost of a recently cited wind farm in southern Wyoming is expected to exceed
one billion US dollars.
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notion of the option value of waiting, which is central to our discussion, is empirically

relevant in these applications.

3 Methods and Materials

3.1 Econometric Methods

To present the stochastic process under investigation, let Pt denote the price of SERC

at time t, which follows a geometric Browniam motion (GBM) process. Define α as

the trend, and σ as the variance, so that

dPt = αPtdt + σPtdz. (1)

In Eq. 1, dz represents an increment of a Wiener process, dz = ξ
√
dt, where ξ has zero

mean and a standard deviation equal to 1. (Dixit and Pindyck (1994)). Let xt denote

the natural logarithm of the ratio of price in period t to the price in period t − 1,

xt = ln(Pt)− ln(Pt−1). If Pt follows a GBM process then xt is normally distributed

with variance σ2 and mean µ = α− σ2/2. This gives the pure diffusion (PD) model

xt = µ+ σzt (2)

The term zt in Eq. 2 is an identically and independently distributed (i.i.d.) random

variable with mean zero and variance one.
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As we observed in Section 2 above, many authors have argued that continuous

stochastic processes, such as GBM, are insufficient for explaining discontinuous move-

ments, or “jumps”, in prices. To introduce jumps into the above model, we adapt

the methodology in Merton (1976) – wherein returns are composed of two types

of changes. The first, ‘normal’ fluctuations, are represented through the geometric

Brownian motion process, while the second – ‘abnormal’ shocks due to the arrival of

new information – are modeled through a discontinuous process. The discontinuities

are described by the Poisson distribution governing the number of discrete-valued

events, ηt ∈ {0, 1, 2, ...}, that occur over the interval (t− 1, t),

P (Nt = j) =
exp(−λ)λj

j!
(3)

Eq. 3 is characterized by the jump intensity, λ, which describes the mean number of

‘events’ per unit of time and is expressed as

dnt =


0 with probability 1− λdt

1 with probability λdt

(4)

As in Askari and Krichene (2008), when abnormal information arrives at time

t, prices jump from Pt− (the limit as the time index tends towards t from left) to

Pt = exp (Jt)Pt−. Accordingly, Jt measures the percentage change in price. The
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resultant stochastic process for the random variable Pt may then be written as

dPt
Pt

= αdt+ σdzt + (exp (Jt)− 1) dnt, (5)

where dzt has the same properties assumed in equation (1) and dnt is the independent

Poisson process described in equation (4). Together the terms dzt and dnt make up

the instantaneous component of the unanticipated return. It is natural to assume

these terms are independent, since the first component reflects ordinary movements

in price while the second component reflects unusual changes in price. The size of

the jump, Yt,k, is itself a random variable; we assume it is normally distributed with

mean θ and variance δ2, and that it is independent of the distribution for the arrival

of a jump. The jump component affecting returns between time t and time t+1 is

then

Jt =
nt∑
k=0

Yt,k. (6)

Thus, the mixed jump-diffusion (JD) process for the log-price returns can be described

by

xt = µ+ σzt + Jt. (7)

The probability density function governing x can be derived by applying Bayes’

law (Chan and Maheu, 2002; Maheu and McCurdy, 2004). To this end let f(xt|nt =

j,Ωt−1) denote the conditional density of returns if j jumps have occurred and given

the available information Ωt−1. Based on Bayes rule, when xt is observed, the posterior
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probability that j jumps will occur at time t is

P (nt = j|Ωt−1) =
f(xt|nt = j,Ωt−1)P (nt = j|Ωt−1)

P (xt|Ωt−1)
. (8)

Then, assuming that the conditional density of xt is normally distributed, and using

equation (3) to describe the probability that j jumps occur, we obtain:

f(xt|nt = j,Ωt−1) =
1√

2π(σ2 + jδ2)
exp(−(xt − µ− θj + θλ)2

2(σ2 + jδ2)
). (9)

Finally, integrating out the discrete valued number of jumps yields an expression for

the conditional density in terms of observable variables:

P (xt|Ωt−1) =
∞∑
j=0

f(xt|nt = j,Ωt−1)P (nt = j|Ωt−1). (10)

An alternative explanation for the “fat tails” that are often observed in commodity

price data is that Pt is subject to time-varying volatility. An example of such a phe-

nomenon is the “generalized autoregressive conditional heteroskedastic” (GARCH)

framework. Adapting the pure diffusion model to allow for this form of time-varying

volatility gives the GARCH–diffusion (GPD) process:

xt = µ+
√
htzt, (11)
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where the conditional variance, ht is described by the process

ht = κ+ α1 (xt−1 − µ)2 + β1ht−1. (12)

Note that when ht = σ2 the GARCH–diffusion model (GPD) reduces to pure diffu-

sion model (PD). On the other hand, when κ > 0 and α1 + β1 < 1, the unconditional

variance of the volatility of the process exists and equals κ
1−α1−β1 . The process de-

scribed in equations (11) – (12) is characterized by four parameters, µ, κ, α1 and β1.

There is a general consensus in the literature is that a GARCH model with a lim-

ited number of terms performs reasonably well (Akgiray, 1989; Hansen and Lunde,

2005; Sadorsky, 2006), and so the focus of the analysis is restricted to this more

parsimonious representation.

Allowing for jump discontinuities would result in the GARCH(1,1) jump-diffusion

(GJD) process:

xt = µ+
√
htzt + Jt, (13)

where ht is described by equation (12). Duan (1997) shows that the diffusion limit

of a large class of GARCH(1,1) models contain many diffusion processes allowing the

approximation of stochastic volatility models by the GARCH process.

We evaluate the four models using maximum likelihood estimation methods, which

are known to provide consistent and invariant estimates, with asymptotically normal

distributions of the parameters. To this end, we note that the parameters of our
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four candidate models – PD, JD, GPD, GJD – may be nested into the general log-

likelihood function

L (φ, xt) = −Tλ− T

2
ln (2π) +

T∑
t=1

ln

[
∞∑
n=0

λn

n!

1√
ht + nδ2

exp

(
− (xt − µ− nθ)

2 (ht + nδ2)

)]
,

(14)

where n indexes the number of jumps, combined with the description of ht given in

equation (12).7 In this framework, the GPD model corresponds to the parameter

restriction λ = θ = δ = 0; the JD model corresponds to the restriction α1 = β1 = 0;

and the PD model corresponds to the restriction α1 = β1 = λ = θ = δ = 0.

Comparing any pair of potential models can thus be framed as a test of an ap-

propriate parameter restriction. For example, the comparison of the PD and GPD

models is conducted by testing the parameter restriction α1 = β1 = 0; the compar-

ison of the PD and JD models is conducted by testing the parameter restriction

λ = θ = δ = 0. The empirical validity of the parameter restriction of interest can be

evaluated by use of the likelihood ratio test. This approach compares the likelihood

function under a particular restriction, L(φR;x ), to that of the unrestricted or less

restricted likelihood function, L
(
φ̂;x
)

. Under the null hypothesis that the restric-

tion is empirically valid, the decrease in the likelihood function associated with the

restriction will be small. Such an approach can be used to make pairwise-comparisons

between a more general model and a more restricted model. The test statistic is the

7 To faciliate estimation based on eq. (14), the number of jumps was truncated at 10 (Ball and
Torous, 1985). Allowing more jumps did not significantly change the point estimates.
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log-likelihood ratio

LR = 2[L(φ̂;x)− L(φR;x)];

under the null hypothesis this statistic will be distributed as a Chi-square random

variable with m degrees of freedom, where m is the number of parameter restrictions.

3.2 Data

We use daily data used in our analysis. SREC prices were obtained from the New

Jersey Clean Energy program website.8 Natural gas prices are based on the Henry

Hub spot price.9 For electricity, we used the PJM Western hub price10, as this range

includes New Jersey.

Table 1 provides summary statistics for the log-returns, calculated as rt = ln(xt)−

ln(xt−1), for each of the prices returns series. The statistics indicate a significant

amount of variation among the three variables, though SERC returns exhibit the

lowest relative level of dispersion. Evidence of asymmetry in the distribution of

returns is also highest for SERC returns, while electricity prices exhibit negative

skewness. The “fat tails” are evident from the large values of kurtosis. The normality

hypothesis of the Kolmogorov-Smirnov test is rejected, for each time-series. Lastly,

Table 1 contains the results of the modified ADF test of nonstationarity. In each

of the log return series the null hypothesis of a unit root is rejected, in favor of

8 Accessed at https://njcleanenergy.com/renewable-energy/project-activity-reports/srec-
pricing/srec-pricing-archive

9 https://www.eia.gov/dnav/ng/ng pri fut s1 d.htm
10 https://www.eia.gov/electricity/wholesale/
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stationarity.11

These results are corroborated by Figures 1 and 2. Figure 1 displays the log returns

for the three energy series. Notably, large sudden changes in the returns are evident,

and appear with less frequency for natural gas returns, though on a larger scale for

SREC solar price returns. Also, the large changes in SREC solar price returns are

evident, and the positive shocks appear much larger in amplitude than the negative

changes. Figure 2 displays “quantile-quantile” plots, for the three return series. This

plot compares the quantiles of the empirical distribution (measured on the y-axis)

against the quantiles of a theoretical normal distribution (measured on the x-axis).

If the empirical distribution is close to a normal distribution, the relation will be

well described by a straight line. As demonstrated in the figure, there are significant

departures from a linear relation, indicating that the date is not well-described by a

normal distribution. Indeed, the significant departures observed in along the ends of

the plots are indicative of significant leptokurtosis and cast doubt on the assumptions

of an underlying GBM process.

11 While not reported in the table, the SREC solar credit, natural gas, and electricity prices are
nonstationary (in levels), and thus first differencing (e.g. log returns) renders the series stationary.
The findings are supported by traditional unit root tests, the results of which are available upon
request.
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4 Results

4.1 Maximum Likelihood Estimation

Using maximum likelihood methods, we estimate the parameters for the four stochas-

tic processes (PD, JD, GPD, GJD), using the daily returns series. The results of the

estimation are presented in Table 2, while the likelihood ratio test statistics, for the

pairwise comparison of the four models, are presented in Table 3.

Examining the pure diffusion results, the estimated drift parameter, µ, is positively

and statistically significant for SREC returns, though not statistically significant for

either natural gas or electricity prices.12 For each series, the estimated instantaneous

rate of variance, σ, is statistically significant. This same pattern holds when exam-

ining the drift and variance of the JD models, though allowing for jumps markedly

reduces the estimated instantaneous rate of variance. Across all three series, the jump

intensity, λ, is statistically significant in each case. The estimated value of λ is largest

for the SREC series; this estimate suggests jumps occur quite frequently for SREC

returns – roughly two out of every three days. Finally, the estimated mean jump size,

θ, is positive when the estimate is significant.

Comparing the results of the PD and GPD models, we see that allowing for

GARCH also improved the models predictive power: the log-likelihood function shows

improvement, in each of the three series. The estimated coefficients associated with

12 To improve convergence of the estimation procedure, we rescaled the price return series for
natural gas and electricity by multiplying by 100; the SREC returns were not rescaled.
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the GARCH model, κ, α1 and β1, are statistically significant across each of the three

series. Additionally, all three series demonstrate persistent volatility, with α1+β1 close

to 1. Notably, the magnitude of the estimated value of κ is large for electricity price

returns – pointing to large overall variation in that series. Importantly, our results

indicate that combining GARCH with the jump model (GJD) yield the best results,

demonstrating the importance of including jumps. We note that the probability of

a jump occurring has fallen across all three series, while the GARCH terms remain

statistically significant. Evidently, the inclusion of GARCH captures some of the

estimated variance originally interpreted as jumps in the JD model, it does not render

the jumps irrelevant. Indeed, based on the decreased values of λ, and notable increases

in θ, the average jump size, one conceivable theory is that the small perturbations are

captured by the GARCH model while the larger discontinuous moves are represented

as jumps.

4.2 Likelihood Ratio Test Results

Results of the pairwise likelihood ratio tests are presented in Table 3. Each entry in

the table is a test of the form LRx,y, where the null hypothesis is that the appropriate

stochastic process describing the data is x and the alternative hypothesis is that the

appropriate stochastic process describing the data is y. The probability that the null

hypothesis is preferred to the alternative, based upon the Chi-squared distribution,

is presented in the parentheses below each test statistics. The results indicate that
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the null hypothesis is rejected at the 1% level of significance in every case. Such a

result is interpreted as demonstrating the statistically important gain in predictive

power associated with adopting the added complexity associated with moving to

specification y, from x. Thus, for example, including GARCH improves upon the JD

model, while folding in jumps improves upon the GARCH model. Importantly, the

preferred specification allows from both jumps and time-varying volatility (GJD), for

each of the three series.

4.3 Implied Probabilities

Figure 3 gives a visual representation of the implied probabilities of at least one jump

in the log price returns, occurring on each week, based on the JD model. The first

panel shows the probabilities for the SREC solar credit returns. Given the frequency

and persistence of implied probabilities that are well above 0.5, it is apparent that

jumps play an important role in both SREC and electricity markets. We note too that

the implied jumps close to 1 in the SREC markets are particularly common in 2012;

this is intriguing as electricity prices in New Jersey were particularly large during this

period. In contrast to the other two markets, the implied jump probabilities in the

natural gas are smaller, and less frequently close to 1. One possible explanation for

this distinction is that natural gas markets are thicker than the other markets. In

addition, the SREC market is noticeably less mature, having only come into fruition

in the last fifteen years; by contrast, natural gas markets have been functioning for
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many years. One conjecture is that market thickness as well as maturity might create

a form of insulation from large transitory events – thereby rendering jumps more

important in younger or thinner markets, such as the SREC market.

5 Discussion

In this study we investigated the price of solar renewable energy certificates (SRECs)

in New Jersey – production credits awarded to owners of grid-connected solar PV

systems – allowing for the potential presence of jumps and time-varying volatility.

Our results point to the importance of both of these features in modeling SREC

price returns. In addition to providing a statistically important improvement in

explanatory power of the empirical model, our results allow us to simulate the implied

probability that at least one jump would occur in any given month. Following this

approach, we developed implied jump probabilities for price returns for SRECs, as

well as natural gas and electricity price returns. Our results point to the consistently

important role of jumps in both SRECs and electricity prices, but less so for natural

gas prices. Jumps in SRECs appear to have been of particular significance in the

period between late 2011 and early 2013, a period when electricity prices in New Jersey

were particularly high – presumably providing heightened incentives for homeowners

to invest in rooftop solar. Two important factors that distinguish SREC and natural

gas markets are the relative thickness of the market and its maturity. Natural gas

markets are commonly thought to be quite thick and mature, whereas SREC markets
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have been in place for a much shorter period, and there are far fewer suppliers of solar

projects. This points to the potentially important role of market structure in driving

fat tails in price returns.13

The rapid growth in solar PV capacity has been driven by the falling price of

installing PV and the implementation of public policies (Nemet, 2019). Even so,

rooftop solar panel installations are a non-trivial expense to the homeowner; Dastrup

et al. (2012) estimate the cost to be on the order of 3-4 % of the home value. Perhaps

because of this feature, Mamkhezri et al. (2020, p. 178) have argued that “there is

a diminishing return in support for [r]ooftop solar.” As we noted in section 1, the

presence of uncertainty can retard investment, particularly in projects with largely

irreversible up-front investments such as rooftop solar installations. The obvious al-

ternative would be a large-scale solar farm. But the private incentive to undertake

such a large investment depends importantly on the option value of waiting to invest.

This delaying effect is larger the larger is the variation in the stochastic element of

concern (here, SREC prices). Importantly, the presence of jumps mimics an increase

in variability (Mason and Wilmot, 2021). As such, our finding that both jumps and

time-varying price volatility provide a statistically important explanation of the pat-

tern in SREC prices is of some concern, as there is reason to fear these effects will

increase the option value of waiting – and thereby retard the rate of investment in so-

13 Of course, market structure can exert an important influence on price levels – either by
allowing sellers to charge higher prices or by allowing sellers to capitalize on cost reductions, for
example through scale economies (Gillingham et al., 2016). Our point is that more concentrated
markets may be more susceptible to the influence of unexpected events that could cause dramatic
changes in prices.
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lar energy. The upshot is that development of solar farms and similar investments are

likely to occur at a somewhat slower pace than one might prefer – slowing the energy

transition. This effect is reminiscent of, but operates through a different channel to,

the potential delay in investment that arises when learning-by-doing effects are impor-

tant (van Benthem et al., 2008). When learning-by-doing effects are present, private

decision-makers undervalue the potential future benefits associated with present ac-

tions, i.e. they overweight current effects. When investments are delayed the option

value of waiting, decision-makers see increased present gains in part because of the

desire to capture potential future gains that might arise if jumps occur. While the

implications for current investment are similar to learning models, the mechanism

differs.

On a more optimistic note, there are signs that energy investments in develop-

ing countries are being directed into renewables: a recent World Bank report argues

that a large share of new electricity-generation projects in developing countries are

renewable-energy, with a focus on solar (World Bank, 2021). On the other hand, to

the extent that developing countries are undertaking energy investments (as opposed

to external players making the investments), there are concerns that these investments

are often directed into technologies that are too carbon-intensive to meet commonly

articulated climate goals (Ball et al., 2021). Moreover, there are possible “resource

curse” concerns associated with large solar projects, particularly in developing coun-

tries with large areas amenable to solar development (O’Sullivan et al., 2017, p. 18).
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To the extent that expanding solar deployment in developing countries entails large

up-front investments, or that there is a link between market power and energy system

lock-ins (Fouquet, 2016b), these factors can reinforce the effects that create an option

value of delaying investment. If so, a concern is that jumps could exacerbate this

retardation in the energy transition in developing countries.
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Figure 1: Time series of price returns

(a) SREC (b) Natural gas

(c) Electricity

Source: Authors’ calculations, based on data from
(a) https://njcleanenergy.com/renewable-energy/project-activity-reports/srec-pricing/srec-pricing-archive;
(b) https://www.eia.gov/dnav/ng/ng pri fut s1 d.htm;
(c) https://www.eia.gov/electricity/wholesale/.
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Figure 2: Quantile–quantile plots

(a) SREC (b) Natural gas

(c) Electricity

Source: Authors’ calculations, based on data from
(a) https://njcleanenergy.com/renewable-energy/project-activity-reports/srec-pricing/srec-pricing-archive;
(b) https://www.eia.gov/dnav/ng/ng pri fut s1 d.htm;
(c) https://www.eia.gov/electricity/wholesale/.
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Figure 3: Fitted probabilities based on the Jump Diffusion model results

(a) SREC (b) Natural gas

(c) Electricity

Source: Authors’ calculations, based on results from Table 2.
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Table 1: Summary Statistics: Solar Price Returns

Variable Solar Returns Natural Gas Returns Electricity Returns

Sample Range
Start Aug 01, 2009 Aug 01, 2009 Aug 01, 2009
End Nov 30, 2015 Nov 30, 2015 Nov 30, 2015

Summary Statistics
Mean 0.0648 -0.00029 -0.0003

Median -0.0014 0.00000 0.00000
Minimum -0.8867 -0.27844 -1.6136
Maximum 5.7102 0.39007 1.1624
Variance 0.2137 0.00166 0.0471
Std. Dev. 0.4623 0.04071 0.2171

Coeff. of Variation 713.6 -14,172.5 -84,591.0
Skewness 4.1873 1.11170 -0.3023
Kurtosis 29.4956 20.22889 7.6107

n 2099 1599 1606

Test of Normality
Kolmogoro Smirnov 0.2508 0.1133 0.1017

p-value <0.01 <0.01 <0.01

Unit Root Test
Modified Dickey Fuller -4.806 -4.909 -4.446
1% critical-value† -3.48 -3.48 -3.48

Lags 20 23 24

Note: Statistics are based on a sample of daily observations. Solar returns are based
on SREC prices; natural gas returns based on Henry Hub spot prices; and electricity
returns are based on PJM prices.
†: Critical values are based on Elliot et al. (1996).
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Table 3: Likelihood Ratio Test Results

Variable LRPD,JD LRPD,GPD LRJD,GJD LRGPD,GJD

Solar Credits (SERC) 2539.02 1714.60 570.62 1395.04
(0.000) (0.000) (0.000) (0.000)

Natural Gas (HH) 812.45 999.34 254.05 67.16
(0.000) (0.000) (0.000) (0.000)

Electricity PJM 540.64 634.21 246.59 153.02
(0.000) (0.000) (0.000) (0.000)

Note: Based on a sample of 2009 observations. p-values are given in the
parentheses.
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