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Abstract

This paper analyzes the in- and out-of-sample performance of the one-factor model proposed

in Moreno, Novales, and Platania (2019), that assumes that the prices of futures present mean

reversion and seasonality. These features are modelled by Fourier series. We consider different

specifications of this model and compare them versus the Schwartz (1997) and Lućıa and Schwartz

(2002) models. We also study the introduction of a second factor, the convenience yield. We use

data of prices of futures on EUA (European Emission Allowances) from 2009 until 2018, traded in

the Intercontinental Exchange. The main qualitative conclusions are: a) the in-sample behavior

of the Moreno et al. (2019) model outperforms all the other one-factor models, b) there is not a

clear winner model when analyzing the forecasting power, and c) the two-factor model fits better

than any one-factor alternative.
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1 Introduction

Carbon dioxide is a greenhouse gas that causes the increase in global temperature. This gas has

recently reached its highest level of atmospheric concentration in the last 800,000 years. Climate

change is one of the biggest changes that occur globally. In an attempt to analyze the relevance of

this asset class, this paper focuses on CO2 emission allowances. In more detail, we will analyze the

in- and out-of-sample behavior of several models on the prices of these allowances futures in order

to find which continuous-time model fits better to the observed market prices of these futures.

Some authors have studied these CO2 emission allowances and the prices of futures on these

assets. For instance, Benz and Trück (2008), Paolella and Taschini (2008), and Seifert et al. (2008)

performed an econometric analysis of the prices of emission allowances and study different models

to determine the spot price dynamics. Chevallier (2009) analyzed the relationship between the

profitability of carbon futures and changes in macroeconomic conditions. Bredin and Muckley (2011)

studied how certain fundamental factors (such as economic growth, energy prices, and climatic

conditions) can determine the prices of US futures. Conrad et al. (2011) modeled the adjustment

process by which US prices respond to publications and announcements and found that the decissions

of the European Commission on domestic allocation plans have a major impact on US prices.

In this paper, we focus on the model proposed in Moreno, Novales, and Platania (2019) (Moreno

et al. (2019), from now on), which assumes that the prices of certain commodities can present mean-

reversion and seasonality. The mean-reversion theory of commodity prices assumes that these prices

revert to a certain long-term level: intuitively, if the price is greater than this level, the supply of the

commodity tends to increase, and when the price is lower than the price at which they revert, the

supply will decrease. This model was initially proposed for energy futures and its empirical behavior

for agricultural futures has been analyzed in Del Campo-Bustos and Moreno (2018).

We also consider several versions of this model in order to study the possible relevance of an

additional component of seasonality and the presence of long-term oscillations. It is expected that

the introduction of Fourier series in the model, which reflects seasonality and convergence to a certain

long-term level, can help to estimate the price of futures on CO2 emissions. In addition, we also

analyze futures prices by introducing a second factor, the convenience yield. For this, we consider

the Bacaicoa et al. (2014) two-factor model. According to the financial theory the convenience yield

decreases futures prices considering the effects of this yield on the underlying asset.

In this paper we will perform both in- and out-of-sample analysis. The in-sample analysis of

one-factor models will be performed by applying non-linear least-squares regressions while the out-

of-sample analysis of one-factor models and the in-sample analysis of the two-factor model will be

based on the Kalman filter. All our analysis consider data from US futures (EU Allowances) from

2009 to 2018, which are traded in the Intercontinental Exchange (ICE).
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The structure of this paper is as follows. In section 2 we describe the models that we will use in

this paper. Section 3 presents the econometric methodology, section 4 describes the characteristics

of the data under analysis and section 5 presents the empirical results. Finally, section 6 summarizes

the main conclusions and suggests some possible future lines of research.

2 Models

This section introduces several one-factor models and one two-factor model. All these models are

the starting point for the empirical analysis that will be presented subsequently.

2.1 One-factor models

2.1.1 Model 1 [Schwartz (1997)]

This author assumes that the spot price at time t of a certain commodity, St, follows a diffusion

process given by

dSt = κ(µ− ln(St))Stdt+ σdWt

where κ, µ, σ ∈ R and Wt is a standard Wiener process. These (constant) parameters indicate,

respectively, the speed of mean reversion, the long-term value of mean-reversion, and the diffusion

coefficient of this process. It is worth to note that this process assumes no seasonality in this price.

Let Xt = ln(St) be the log-spot price. Applying the Itô’s Lemma, this price follows an Ornstein-

Uhlenbeck stochastic process that, under the equivalent martingale measure, can be written as:

dXt = κ(α̃−Xt)dt+ σdW̃t (1)

where α̃ = µ − σ2

2κ − σλ
κ , with a constant market price of risk, λ, and dW̃t = Wt + λt is a standard

Wiener process under the risk-neutral measure.

Under this measure, the solution to equation (1) is given by:

Xs = e−κ(s−t)Xt + (1− e−κ(s−t))α̃+ σ

∫ s

t
e−κ(s−u)dW̃u

Then, given the filtration F t, this variable follows a Gaussian distribution with mean and variance:

Ẽ[XT |F t] = e−κ(T−t) ln(St) + (1− e−κ(T−t))α̃

Ṽ [XT |F t] = Ṽ

(
σ

∫ T

t
e−κ(T−t)dW̃t

)
=

σ2

2κ
(1− e−2κ(T−t))

Therefore, applying the properties of the lognormal distribution, the forward price of the commodity
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at time T is the expected commodity price under the martingale measure:

F (St, t, T ) = Ẽ[ST |F t] = exp

{
Ẽ[XT |F t] +

1

2
Ṽ [XT |F t]

}
= exp

{
e−κ(T−t) ln(St) + (1− e−κ(T−t))α̃+

σ2

4κ
(1− e−2κ(T−t))

}
Taking logarithms, we get the following expression:

ln(F (St, t, T )) = e−κ(T−t) ln(St) + (1− e−κ(T−t))α̃+
σ2

4κ
(1− e−2κ(T−t))

2.1.2 Model 2 [Lućıa and Schwartz (2002)]

These authors analyze the possible existence of regular patterns in the behavior of electricity prices

by analyzing spot and futures prices in the Nord Pool market. This regular (seasonal) pattern in the

futures curve will be modelled with a sinusoidal function. Then, the process for spot prices includes

two components: a) a deterministic component that explains the regularities in the price evolution

and b) a stochastic continuous-time process.1

In more detail, the log-spot price process can be written as:

ln(St) = ft + Yt

where ft is a time-varying deterministic function and Yt follows a mean-reverting process, whose

dynamics is given by:

dYt = −κYtdt+ σdWt

Assuming a constant risk market price, λ, the risk-neutral version of this process is:

dYt = κ(α∗ − Yt)dt+ σdW̃t, α
∗ = −σλ

κ

The function ft aims to capture the behavioral components of electricity prices derived from natural

regularities along time. Therefore, the seasonal behavior will be described by a process that fluctuates

randomly around a constant long-term mean value. This function will include a constant plus two

terms, that aim to capture, respectively, the variation in the price level distinguishing between

working and non-working days and the seasonal yearly evolution of prices. In more detail, we have

ft = α+ βDt + γ cos

(
(t+ τ) · 2π

365

)
where α, β, γ, τ ∈ R and the dummy Dt equates one in week-ends or holidays and is zero otherwise.

The cosine function reflects the seasonal pattern in the price evolution along the year.

1For simplicity, constant interest rates are considered.
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Under the risk-neutral probability, the log-spot price Xt = ln(St) is given by:

Xs = fs + e−κ(s−t)Yt + (1− e−κ(s−t))α∗ + σ

∫ s

t
e−κ(s−u)dW̃u, s > t

Then, the log-spot is normally distributed and, then, the spot price follows a lognormal distribution.

Finally, the price at time t of a futures on this commodity that matures at T is given by:

F (St, t, T ) = Ẽ[ST |F t] = exp

{
Ẽ[XT |F t] +

1

2
Ṽ [XT |F t]

}
= exp

{
fT + e−κ(T−t)(ln(St)− ft) +

(
1− e−κ(T−t)

)
α∗ +

σ2

4κ

(
1− e−2κ(T−t)

)}
2.1.3 Moreno, Novales, and Platania (2019) model

These authors present a model for commodities prices and obtain closed-form expressons for prices

of different derivatives, including futures. They incorporate seasonal and cyclical fluctuations as

well as long-term fluctuations in futures prices. One of their main assumptions is that futures

prices converge to a long-term value that experiences periodic and smooth fluctuations throughout

certain time periods. For cyclical and seasonal fluctuations they introduce deterministic terms in

the stochastic process of the log spot price.

In a similar way to Lućıa and Schwartz (2002), these authors assume that the process for the

spot price can be split into two components

ln(St) = f(t) + Yt

The deterministic component f(t) that represents the seasonal behavior of the commodity price is

modeled with a Fourier series:

f(t) =
∞∑
n=0

Re[Ane
inwf t]

The component Yt follows a mean-reverting process, which reverts to z(t), that depends on time and

captures long-term variations:

dYt = κ(z(t)− Yt)dt+ σdWt

z(t) =

∞∑
n=0

Re
[
Bne

inwzt
]

where κ, σ, wf , wz ∈ R+ and Wt is a standard Wiener process. An and Bn are complex numbers:

An = Ax,n + iAy,n and Bn = Bz,n + iBy,n. If Bn = 0 and An = 0, this model nests that in Schwartz

(1997). This model also nests the Lućıa and Schwartz (2002) model if Bn = 0 and f(t) matches the

function proposed by those authors.
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The futures price of a commodity is obtained using the properties of the lognormal distribution

under the risk-neutral measure:

F (St, t, T ) = Ẽ[St|Ft] = exp

{
Ẽ[ln(St)|Ft] +

1

2
Ṽ [ln(St)|Ft]

}
= exp

{
f(T ) + e−κ(T−t)(ln(St)− f(t)) + (1− e−κ(T−t))α+

σ2

4κ
(1− e−2κ(T−t))

+

∞∑
n=1

Re

[
κBn

κ+ inwz
(einwzT − e−κ(T−t)+inwzt)

]}

that, taking logarithms, can be written as

ln(F (St, t, T )) = f(T ) + e−κ(T−t)(ln(St)− f(t)) + (1− e−κ(T−t))α+
σ2

4κ
(1− e−2κ(T−t))

+

∞∑
n=1

Re

[
κBn

κ+ inwz
(einwzT − e−κ(T−t)+inwzt)

]
Then, the logarithm of the futures price can be split into four components:

� Spot effect, indicating a correction of the logarithm of the spot price:

e−κ(T−t) ln(St)

� Seasonal and cyclical effect, that quantifies the effect of the periodic, seasonal, and cyclical

component (short- and medium-term effects):

f(T )− e−κ(T−t)f(t)

� Volatility effect:
σ2

4κ

(
1− e−2κ(T−t)

)
� Long-term (swing) effect, that is, the effect of the mean-reversion level:

(1− e−κ(T−t))α+
∞∑
n=1

Re

[
κBn

κ+ inwz
(einwzT − e−κ(T−t)+inwzt)

]

Therefore, the logarithm of the futures price can be expressed as the sum of two terms:

ln(Ft(St, t, T )) = M(St, t, T ; θ) +N(t, T ; θ)

where

M(St, t, T ; θ) = e−κ(T−t) ln(St) + (1− e−κ(T−t))α+
σ2

4κ
(1− e−2κ(T−t))
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depends on the spot price and time to expiration. On the other hand, we have

N(t, T ; θ) =

∞∑
n=0

Re
[
An(e

inwfT − e−κ(T−t)+inwf t)
]
+

∞∑
n=1

Re

[
κBn

κ+ inwz
(einwzT − e−κ(T−t)+inwzt)

]
that represents the seasonality component, which is the novel aspect of this model with respect

to previous ones. The two terms of this equation describe, respectively, the seasonal fluctuations

around the long-term mean price and the time evolution of the level of mean-reversion.

We will analyze seven particular cases of this model:

� Model 3 incorporates a single term of the Fourier series to represent the level of mean-reversion,

so that the second component of the logarithm of the futures price is given by:

N(t, T ; θ) = Re

[
κB

κ+ iwz
(eiwzT − e−κ(T−t)+iwzt)

]
� Model 4 adds a Fourier series representation with a single frequency for f(t), with the goal of

capturing the cyclical component and seasonal, so the second component will be:

N(t, T ; θ) = Re[A(eiwf,1T − e−κ(T−t)+iwf,1t)] +Re

[
κB

κ+ iwz
(eiwzT − e−κ(T−t)+iwzt)

]
� Model 5 considers two different frequencies in the series f(t), aiming to capture fluctuations

in the business cycle and short-term seasonality. So, we have:

N(t, T ; θ) =
∑
l=1,2

Re[Al(e
iwf,lT − e−κ(T−t)+iwf,lt)] +Re

[
κB

κ+ iwz
(eiwzT − e−κ(T−t)+iwzt)

]

� Model 6 considers three frequencies in f(t) trying to improve the fit to observed data. In this

case, we have:

N(t, T ; θ) =
∑

l=1,2,3

Re[Al(e
iwf,lT − e−κ(T−t)+iwf,lt)] +Re

[
κB

κ+ iwz
(eiwzT − e−κ(T−t)+iwzt)

]

� Model 7 considers a single frequency for f(t) and does not take into account the representation

of the level of mean-reversion. Therefore, we have:

N(t, T ; θ) = Re[A(eiwf,1T − e−κ(T−t)+iwf,1t)]

� Model 8 incorporates two frequencies in the f(t) series that capture the fluctuations of the

business cycle and short-term seasonality:

N(t, T ; θ) =
∑
l=1,2

Re[Al(e
iwf,lT − e−κ(T−t)+iwf,lt)]
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� Model 9 adds a third frequency for f(t) trying to capture better the seasonality, so we have:

N(t, T ; θ) =
∑

l=1,2,3

Re[Al(e
iwf,lT − e−κ(T−t)+iwf,lt)]

Moreno et al. (2019) estimated empirically models 1 to 5 using prices of three energy futures

and found that their models (3 to 5) outperformed models 1 and 2.

2.2 Bacaicoa, Moreno, and Platania (2014) model

These authors extend the Moreno et al. (2019) model to two factors, these factors being the spot

price and the convenience yield, which follow the processes

dSt = (µ− δt)Stdt+ σ1StdW
1
t

dδt = κ(f(t)− δt)dt+ σ2dW
2
t

where W i
t , i = 1, 2 are correlated standard Brownian motions with dW 1

t dW
2
t = ρdt.

The convenience yield converges in the long-term to the function f(t), characterized by a Fourier

series

f(t) =

∞∑
n=0

Re[Ane
inwt]

Solving these processes, the convenience yield is given by the following process

δT = e−κ(T−t)δt + α(1− e−κ(T−t)) + κ

∞∑
1

Re

[
An

inw + κ
(einwT − einwt−κ(T−t))

]
+σ2

∫ T

t
(1− e−κ(T−u))dW̃ 2

u

Therefore, the futures price is given by

F (St, t, T ) = St exp

{(
r − α+

σ2
2

2κ2
− 1

κ
σ1σ2ρ

)
(T − t)

+
1− e−κ(T−t)

κ

(
α− δt +

1

κ
σ1σ2ρ−

σ2
2

κ2

)
+

1− e−2κ(T−t)

κ3
σ2
2

4κ3

+

∞∑
1

Re

[
An

inw + κ

(
einwT − einwt−κ(T−t)

)]
−

∞∑
1

Re

[
An

inw

(
einwT − einwt

)]}
or, equivalently,

ln(F (St, t, T )) = ln(St) +

(
r − α+

σ2
2

2κ2
− 1

κ
σ1σ2ρ

)
(T − t)

+
1− e−κ(T−t)

κ

(
α− δt +

1

κ
σ1σ2ρ−

σ2
2

κ2

)
+

1− e−2κ(T−t)

κ3
σ2
2

4κ3

+

∞∑
1

Re

[
An

inw + κ

(
einwT − einwt−κ(T−t)

)]
−

∞∑
1

Re

[
An

inw

(
einwT − einwt

)]
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3 Econometric method

We describe now the optimization problem and the econometric methodology that will be imple-

mented to estimate the parameters of the different (one- or two factor) models that were presented

in the previous section.

3.1 Optimization problem

The optimization problem to be expressed as

min(SR(θ̃; θ̃m)) =
T∑
t=1

κ∑
j=1

(Pjt − β
′
ηj,t)

′
W (Pjt − β

′
ηj,t)

where W = Ik and

β
′
ηj,t =

8∑
i=1

βiηij,t

The price of each commodity presents a common structure for each futures but, in addition, there

may be specific seasonal and cyclical components for each maturity of the corresponding futures

(models 4 to 9).

We have:

Pt = ln(F (St, t, T ))− eκ(T−t) ln(St) =

10∑
i=1

βiηij,t + ut

η1t = 1− e−κ(T−t)

η2t =
1

4κ
(1− e−2κ(T−t))

Therefore, Pt and ηit are non-linear functions of the structural parameters. It is important to indicate

that ηit, i = 3, · · · , 10 present a different specification for each model.

In order to separate the long-term common component and the specific components of the dif-

ferent maturities, we need to impose a common level of mean-reversion for all the maturities but

allowing seasonal and cyclical components to differ across maturities.

For each model, we have the following parameters:

� Model 1: Schwartz (1997):

β1 = α̃ = µ− σ2

2κ
− σλ

κ
, β2 = σ2, βi = 0, i = 3, · · · , 8

� Model 2: Lućıa and Schwartz (2002). This model incorporates a seasonality component:

β1 = α̃ = µ− σλ

κ
, β2 = σ2, β3 = γ, βi = 0, i = 4, · · · , 8

η3t = cos

(
(T + φ)

2π

260

)
− eκ(T−t) cos

(
(t+ φ)

2π

260

)
8



We now study the three specifications proposed by Moreno et al. (2019):

� Model 3 incorporates long-term oscillations, where

β1 = α, β2 = σ2, βi = 0, i = 5, · · · , 10

Being the Fourier components

β3η3t + β4η4t = Re

[
(Bx + iBy)

κ

κ+ iwz
(eiwzT − e−κ(T−t)+iwzκt)

]
� Model 4 includes long-term oscillations and a seasonality component. So, we have:

β1 = α, β2 = σ2, β7 = β8 = β9 = β10 = 0

The Fourier components are:

β3η3t + β4η4t = Re

[
(Bx + iBy)

κ

κ+ iwz
(eiwzT − e−κ(T−t)+iwzκt)

]
β5η5t + β6η6t = Re

[
(Ax,1 + iBy,1)e

iwf,1t
]

� Model 5 incorporates two terms in the Fourier series, related to the cyclical component, and

a term in the long-term mean.

In this case, β1 = α, β2 = σ2, β9 = β10 = 0, being the Fourier components

β3η3t + β4η4t = Re

[
(Bx + iBy)

κ

κ+ iwz
(eiwzT − e−κ(T−t)+iwzκt)

]
8∑

i=5

βiηit =
∑
l=1,2

Re
[
(Ax,l + iAy,l)e

iwf,lt
]

Models 4 and 5 incorporate more than one Fourier series. The lowest frequency is related to

long-term oscillations in the level of mean-reversion and the remaining frequencies define the

cyclical or seasonal components of futures prices.

We present now models 6 to 9, which provide an extension of models 3 to 5:

� Model 6 adds an additional seasonal component to model 5.

The Fourier components are now given by

β3η3t + β4η4t = Re

[
(Bx + iBy)

κ

κ+ iwz
(eiwzT − e−κ(T−t)+iwzκt)

]
10∑
i=5

βiηit =
∑

l=1,2,3

Re
[
(Ax,l + iAy,l)e

iwf,lt
]
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� Model 7 is equal to model 4 eliminating the long-term oscillations.

Then, it includes just one seasonality component. So, we have:

β1 = α, β2 = σ2, βi = 0, i = 7, · · · , 10

Being the Fourier components

β5η5t + β6η6t = Re
[
(Ax,1 + iBy,1)e

iwf,1t
]

� Model 8 incorporates two terms in the Fourier series, related to the cyclical component.

In this case,

β1 = α, β2 = σ2, β3 = β4 = β9 = β10 = 0

Being the Fourier components

8∑
i=5

βiηit =
∑
l=1,2

Re
[
(Ax,l + iAy,l)e

iwf,lt
]

� Model 9 adds one more seasonal component to model 8, so the Fourier components are now

10∑
i=5

βiηit =
∑

l=1,2,3

Re
[
(Ax,l + iAy,l)e

iwf,lt
]

We will apply the Kalman filter to perform the forecasting analysis of one-factor models and

analyze the in-sample behavior of the two-factor model. Then, this technique will be briefly described

before applying it to the different models.

Following Harvey (1989), the Kalman filter is a recursive algorithm, which allows to evaluate

numerically a likelihood function to estimate certain parameters, generating estimates of the unob-

servable variables included in the model. The limitation of this method is that it assumes that no

observable variable can affect unobservable states or variables.

To apply this algorithm we need to write the model in the form of state space, such that:

ξt+1 = Fξt + υt+1

yt = A′xt +H ′ξt + ωt

These equations are named state and observation equations, respectively. The vector ξt includes the

unobservable variable while yt and xt include the observable variables. In more detail, xt contains

exogenous variables.

The goal is to predict ξt+1 e yt+1 with the information available at time t, the prediction being

ξ̂t+1|t = E(ξt+1|Yt), where Yt denotes the set of available information.
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3.2 Forecasting Analysis

All our models assume that there is a relationship between spot and futures prices, although the

spot market tends to present more abrupt changes than the futures market. This is because, in the

spot market, the closing prices are liquidation prices while, in the futures market, the average prices

along the last minutes of the session are considered. For this reason, we will consider that spot prices

can incorporate a noise component.

To perform the forecasting analysis of the one-factor models, the Kalman filter technique will be

used, where the representation in the state space is as follows:

ln(St+1) = G+ F ln(St) + υt+1

ln(F (St, t, T )) = A′xt +H ′ ln(St) + ωt

where E(υtυ
′
t) = Q and E(ωtω

′
t) = R, being Q and R constants.

We take the log-spot price at time t + 1 as an unobservable variable in the state space repre-

sentation. The process to be performed is as follows: at time t, the filtered spot price, St, and

the estimates of F̂ and Ĝ are used to predict St+1, which will be used to estimate the observation

equation one period later, F̂t+1.

The observation equations, specific for each model, are the following:

� Model 2 : Lućıa and Schwartz (2002):

ln(F (St, t, T )) =
(
α σ2

4κ γ γ
)


1− e−κ(Ti−t)

1− e−2κ(Ti−t)

cos((Ti + φ)2π/269)

−e−κ(Ti−t) cos((t+ φ)2π/260)

+ e−κ(Ti−t) ln(St) + ωti

� Remaining models:

Remaining models can be summarized in a single matrix since, for each model, we get a

particular case of a more general matrix:

ln(F (St, t, T )) = A x′i + e−κ(Ti−t) ln(St) + ωti

where

A =

(
α

σ2

4κ
Bx By Ax Ay Ax,2 Ay,2 Ax,3 Ay,3

)
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and

x′i =



1− e−κ(Ti−t)

1− e−2κ(Ti−t)

κ cos(ωzTi) + ωz sin(ωzTi)− e−κ(Ti−t)[κ cos(ωzt) + ωz sin(ωzt)]

−κ sin(ωzTi) + ωz cos(ωzTi)− e−κ(Ti−t)[ωz cos(ωzt)− κ sin(ωzt)]

cos(ωfTi)− e−κ(Ti−t) cos(ωf t)

e−κ(Ti−t) sin(ωf t)− sin(ωfTi)

cos(ωf2Ti)− e−κ(Ti−t) cos(ωf2t)

e−κ(Ti−t) sin(ωf2t)− sin(ωf2Ti)

cos(ωf3Ti)− e−κ(Ti−t) cos(ωf3t)

e−κ(Ti−t) sin(ωf3t)− sin(ωf3Ti)


So we have:

– Model 1 includes the first two elements of both A and xi.

– Model 3 considers the first four elements of both A and xi.

– Model 4 consists of the first six elements of both A and xi.

– Model 5 corresponds to the first eight elements of both A and xi.

– Model 6 includes the first ten elements of both A and xi.

– Model 7 does not take into account the third and fourth elements of both A and xi because

they correspond to long-term swings. Thus, model 7 has only one seasonal component,

that is, it considers the first, second, fifth, and sixth elements of both A and xi.

– Model 8 takes into account the elements of the model 7 and also the seventh and eighth

elements of both A and xi.

– Model 9 enlarges the model 8 by adding the ninth and tenth elements of both A and xi.
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We will perform the forecasting analysis for two different years, 2016 and 2017. We start predict-

ing the first quarter of 2017. For this, we use daily data from 2016 to calibrate each model, except

the frequency parameters for which we use the complete sample until the end of 2016. Once the

model is calibrated, we obtain the one-day ahead forecasts for futures prices during the first quarter

of 2017. Later, we recalibrate the parameters of each model using data from April, 2016 to March,

2017. For the frequency parameters we use the entire sample until March, 2016. And we forecast

the second quarter of 2017. We continue this process until we get one-day ahead predictions for

futures prices along the four quarters of 2017.

We perform the same procedure but using 2015 and 2016 data instead of just data from 2016.

Thus, we forecast the first quarter of 2017 by using data from both years to calibrate the model and

data from the whole sample until the end of 2016 to estimate the frequency parameters. The second

quarter of 2017 is forecasted by using data from April, 2015 to March, 2017. And so on until we

have predictions for the four quarters of 2017.

We apply the same method to forecast the year 2016, using alternatively data from 2015 and

data from 2014 and 2015. We will compare our forecasted values versus observed data and we obtain

the forecasting errors, that will be shown in the corresponding tables and discussed accordingly.

3.3 Two-factor model

The difficulty of this model with respect to one-factor models is due to the existence of unobservable

variables, in this case, the convenience yield. As dicussed previously, for models with unobservable

variables, the Kalman filter will be applied to estimate their parameters.

For the two-factor model under analysis (Bacaicoa et al., 2014), the state space representation

is the following:

� The state equation is

dδt = κ(f(t)− δt)dt+ σ2dW
2
t

The discrete version of this equation is

δt+∆t − δt = κf(t)∆t− κδt∆t+ ξ2t

or, equivalently,

δt+∆t = κf(t)∆t+ (1− κ∆t)δt + ξ2t

where ξ2t follows a distribution N(0, σ2
1∆t).

Therefore, in matrix form, the state equation is

δt︸︷︷︸
αt

= κf(t)∆t︸ ︷︷ ︸
ct

+(1− κ∆t)︸ ︷︷ ︸
Qt

δt−∆t︸ ︷︷ ︸
αt−∆t

+ξ2t
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� For this model, the observation equation is given by:

ln(F (St, τ)) = −1− e−κ(τ)

κ
δt +Xt +

(
r − α+

σ2
2

2κ2
− 1

κ
σ1σ2ρ

)
τ

+
1− e−2κτ

κ3
σ2
2

4κ3
+

1− e−κτ

κ

(
α+

1

κ
σ1σ2ρ−

σ2
2

κ2

)
+

∞∑
1

Re

[
An

inw + κ
(einw(t+τ) − einwt−κτ )

]

−
∞∑
1

Re

[
An

inw
(einw(t+τ) − einwt)

]
+ εt

that can be rewritten as

Yt = −1− e−κ(τ)

κ︸ ︷︷ ︸
H′

αt︸︷︷︸
ξt

+ dt︸︷︷︸
A′xt

+ εt︸︷︷︸
ωt

where Yt = ln(F (St, τ)), αt = δt, and εt follow a distribution N(0, h).

Once we have written the model in the state space form, we will apply the Kalman filter to

estimate the parameters. As explained earlier, this filter is a recursive algorithm, which starts

from initial values of α̂ti = ct +Qt ˆαti−1 and the variance-covariance matrix of the estimation error

P̂ti = QtPti−1Q
′
t + Vt.

4 Data

As mentioned above, we will use data for futures on EUA (European Emission Allowances). These

futures have monthly maturities and, in each contract, 1,000 permits of CO2 emissions are traded.

Each permit allows one ton of carbon dioxide to be emitted and it is traded in euros and cents

per metric ton. The minimum tick is 0.01e per ton, or equivalently, 10e for each futures. The

futures expires at the last Monday of the corresponding month.2 The closing price is computed as

the average of the quoted prices during the daily closing period (16:50:00 - 16:59:59 hours, local

time in United Kingdom), or with quoted liquidation prices if the liquidity is low. Contracts are

physically settled and delivered by transferring the EU allowances from the seller account to the

buyer accounts in the Union Registry. All transfers go through the account of the clearing member

and ICE Clear Europe. The delivery is made three days after the last trading day.

Data series have been obtained from Datastream and closest-to-maturity futures will be used.

For all the maturities, the sample period ends in March 9, 2018. The beginning of the sample period

depends on the considered maturity. Specifically, we have:

2However, if the last Monday is a non-working day or there is a non-working day in the 4 days after the last Monday,

the last trading day will be the penultimate Monday of the delivery month.
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� Spot price and first and second closest-to-maturity futures: October 27, 2009.

� Third and fourth closest-to-maturity futures: July 30, 2010.

� Fifth closest-to-maturity futures: December 29, 2010.

� Sixth and seventh closest-to-maturity futures: April 3, 2012.

We perform a descriptive analysis of the prices of futures on CO2 emission allowances. Table

1 provides several statistics of the prices of the closest-to-maturity futures and of the spot price.

We see that the mean price of these futures ranges between 6.91 and 8.55, an interval that includes

the mean spot price. We also see that the volatility has increased in the five closest maturities and

is smaller in the sixth and seventh closest-to-maturity futures. This fact can be explained by the

seasonality, that implies that the periods with higher amount of information relative to the level of

production also present the highest volatility in all the maturities. Then, in the futures that mature

after these periods, we can observe intervals of volatility increasing with maturity.

[INSERT TABLE 1 AROUND HERE]

In all the cases, we see a positive skewness, indicating that extreme high values have higher

probability than low ones. This can be also checked in the maximum and minimum values as the

maximum values are more extreme than minimum ones. The kurtosis ranges between 2.27 and 5.80

and increases with maturity except in maturitiess 6 and 7.

Figure 1 includes the time series for the spot price and futures prices and shows a similar evolution

in all the maturities. From mid 2015 on, the time evolution in all the series is so similar that they

are almost indistinghuisible. These futures reach maximum and values around, respectively, May,

2011 and April, 2013. In addition, the market seems to be in contango in most of the sample period.

[INSERT FIGURE 1 AROUND HERE]

Finally, we have studied the stationarity of these prices (in levels and in first differences) by

computing the augmented Dickey-Fuller statistic. Table 2 presents the results and shows that the

spot and futures prices include a unit root while all the first differences are stationary.

[INSERT TABLE 2 AROUND HERE]

5 Empirical results and interpretation

This section includes the empirical analysis and the results obtained when estimating the parameters

of the models described above. We start with the in-sample analysis of the nine one-factor models.

15



5.1 In sample analysis

Table 3 includes the in-sample estimates of the parameters for each model and three measures of

goodness of fit: the minimum of the sum of squared errors,
∑

tminSCR(θ̂t) =
∑

t ût, its standard

deviation, 1
n

∑n
t=1 û

1/2
t , and the absolute mean error, 1

n

∑n
t=1 |ût|. These estimates have been ob-

tained using the entire sample available for each futures. It can be seen that the model 9 provides

the smallest sum of squared errors, although the most notable improvement occurs when moving

from model 2 to model 3. This suggests that, to explain futures prices, it is necessary to introduce a

cyclical component, either long- or short-term. It should also be noted that the models that exhibit

long-term oscillations have SCR very similar to the models that only incorporate seasonality.

[INSERT TABLE 3 AROUND HERE]

Table 4 provides the sums of squared errors for each maturity and its comparison for each model.

We can conclude that including the Fourier terms in the process that follows the log-futures price

improves the adjustment to market observed data, since the sum of squared errors decreases. The

highest improvement appears in models 3 and 7, which incorporate long-term oscillations and a

cyclical component, respectively. That is, the inclusion of the additional cyclical components of

models 4, 5, 8, and 9 improves the adjustment but this improvement is not very high.

[INSERT TABLE 4 AROUND HERE]

We now discuss the main results obtained with each model:

� Model 2 includes a seasonal component but the improvement with respect to model 1 is

marginal (0.83%). This fact does not indicate that futures prices do not present seasonal-

ity but that this is already incorporated in the price, since it is present in spot prices.

� Model 3 incorporates oscillations in the level of mean-reversion through a Fourier term and this

incorporation leads to an improvement of almost 44% and 45% with respect to, respectively,

models 2 and 1. According to this model, the estimated frequency of long-term fluctuations is

approximately 20.5 years.

� Model 4 includes a seasonal component and a Fourier term with a frequency for the seasonal

and cyclical components. The improvements produced by this model are, respectively, 51.11%,

50.71%, and 11.07% with respect to models 1, 2, and 3. In this model, the long-term oscillations

in the level of mean-reversion are around 13 years, significantly lower than the frequency

obtained for the previous model.
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� Model 5 incorporates a second frequency in the Fourier series and produces an improvement

of 52.21%, 51.81%, 13.06% and 2.25% with respect to the first four models. In this case, the

estimated frequency for long-term oscillations is 14 years. The periodic component suggests a

period of between 3.5 and 4.5 years, except for the second term that has a period of 8.5 years.

Finally, the second frequency ranges between 4 and 10 years.

� The improvement in model 6 with respect to model 5 is not very relevant, which indicates that

the effect of the last seasonal component is marginal when it comes to explain futures prices.

The estimated frequency for long-term oscillations is 13.5 years and the seasonal frequencies

range between 1.5 and 7 years.

� Model 7 is similar to the model 4, with the difference that in this model long-term oscillations

are not incorporated in the level of mean-reversion. This model produces improvements of

47.48%, 47.04% and 4.45% with respect to models 1, 2, and 3, respectively. With respect to

models 4 and 5, there is a worsening of 7.45% and 9.90%, respectively.

� Model 8 is similar to model 5 but it does not incorporate the long-term swing. The improve-

ments that are produced are 52.29%, 51.89%, 13.21%, 2.40%, 0.17%, and 9.17% with respect

to, respectively, models 1 to 6.

� Finally, the model 9 presents the smallest sum of squared errors although the improvement

with respect to the model 8 is not very high.

Therefore, we can conclude that the ranking of models (from least to most suitable) is: 1 - 2 - 3

- 7 - 4 - 5 - 8 - 6 - 9. Although the highest relative improvement between models occurs in models

3 and 7, when including long-term oscillations, the model 9 presents the lowest SCR, so including

seasonality also helps greatly to estimate the price of futures on CO2 emissions.

Figure 2 shows the fitted futures prices for the nine estimated models and the observed futures

prices. For the fifth maturity, all the models provide a good adjustment, being better in models 7,

4, and 6, and worse in models 1 and 2. Although we must emphasize that the model with the best

fit is not always the same but depends on the period under analysis. For this reason, several periods

will be studied later. Figure 3 shows that the spot effect does not exactly reproduce the level of the

futures price but they present a very similar behavior.

[INSERT FIGURES 2 and 3 AROUND HERE]

Figure 4 shows the decomposition of the four effects of the model 5 for the second nearest

maturity. These effects are: spot effect, volatility effect, effect of periodic (seasonal and cyclical)

component, and effect of long-term oscillations. In figure 5, the level of mean-reversion (long-term
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swing) is observed in the model 5 for the five maturities of the chosen futures. We can see a certain

synchronization among the levels obtained for the different maturities.

[INSERT FIGURES 4 and 5 AROUND HERE]

We analyze now these models along two subperiods, since the Kyoto Protocol expired at the

end of 2012 and its continuation was signed at the 2012 Doha summit. Then, we consider a first

subperiod sicne the first available data for each futures until the end of 2012 and a second subperiod

that starts in 2013 and ends in March, 2018.

Table 5 includes the estimates and the measures of goodness of fit for the first subperiod. Models

5 and 9 improve the results from the other models, being the model 9 the one with the highest gain,

31.90%, with respect to the model 2.

[INSERT TABLE 5 AROUND HERE]

Table 6 shows, for each maturity, the SCR, the seasonality period, and the improvement of each

model. It can be seen that the improvements with respect to models 1 and 2 are not so high as when

we consider the entire sample. Even so, certain models (such as 4 or 7) show notable improvements.

The frequency of long-term oscillations is estimated around 10 years for models 3, 4, and 5, and

around 17 years for the model 6.

[INSERT TABLE 6 AROUND HERE]

Figure 6 shows the fitted prices provided by the different models for the second maturity (the

one with more available data) and the observed futures prices. In this case, models 5 and 9 are those

that seem to produce a better fit.

[INSERT FIGURE 6 AROUND HERE]

For the second subperiod, Table 7 shows the estimated parameters and the measures of goodness

of fit. The model 9 presents the lowest SCR, with an improvement of 41.07% over the model 1.

Models 4, 5, 6, and 8 have a very similar SCR, so all these models could be considered reasonable

when estimating these futures prices. In this subperiod, the highest improvement, 39.69%, occurs

from model 2 to model 3.

[INSERT TABLE 7 AROUND HERE]

Table 8 shows the improvements and seasonality periods of each model for each maturity. We

see that the frequency of long-term oscillations fluctuates between 10 and 13.5 years depending on

the model. The highest improvements with respect to model 2 occur in models 3 and 7.
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[INSERT TABLE 8 AROUND HERE]

Figure 7 illustrates that the model 6 provides the worst fit at the beginning of the sample but

does not provide the highest sum of squared errors. This is because, although it fits poorly at the

beginning, it adjusts quite well later, so that other models with an average adjustment along the

sample end up having a higher SCR.

[INSERT FIGURE 7 AROUND HERE]

Table 9 summarizes the ranking of models (from lowest to highest SCR) along with the ranking

of the estimated models on a yearly basis. We can see that the model 9 has the lowest SCR although

the highest improvement occurs in other models, such as 4, 8, or 3.

[INSERT TABLE 9 AROUND HERE]

Then, we can say that the model 9 presents the lowest SCR for all the periods under analysis.

However, in many cases, this SCR is similar to that in other models. Therefore, given the cost of

adding more frequencies, one might think that one of the other models would also be appropriate.

It is necessary to highlight that, in all the cases, models 1 and 2 do present a sum of squared errors

that is significantly higher than in the remaining models, so including the seasonal components does

significantly improve the estimates.

5.2 Forecasting analysis

This subsection studies whether the aforementioned models help to anticipate changes in the market

prices of futures on CO2 emission allowances. Then, we compare now all the models, focusing on

their sum of squared forecasting errors.

Tables 10 to 13 summarize the main results. Table 10 shows the forecasting results for the year

2016 using data from 2015. The model 7 provides the lowest forecasting error but it is not the model

with the best in-sample fit (model 9). Analyzing the different terms, the model 7 also presents the

smallest error for the first term, the model 6 is the best one for the second term and the model 9 is

the best one for the last two terms. The model 3 has the highest total error.

[INSERT TABLE 10 AROUND HERE]

If we use the information of 2014 and 2015, Table 11 shows that the model 3 presents the smallest

error. It can be seen that, using the information of both years, the errors increase considerably. On

a three months basis, models 5, 3, 4, and 9 are, respectively, the best ones for the different terms of

2016. Finally, the model 8 shows the highest overall error.
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[INSERT TABLE 11 AROUND HERE]

Table 12 shows the results for 2017. Clearly, the model 4 is the best one as it presents the lowest

forecasting errors. Once again, the model with the best in-sample behavior (model 9) does not show

the best out-of-sample performance. The highest forecasting errors are obtained in the first and

fourth terms. The model 3 provides the smallest errors in the first two terms. Models 1 and 4 obtain

the best fit in the third term and the model 4 is the best one along the last term. The model 8

provides the worst overall fit.

[INSERT TABLE 12 AROUND HERE]

Using the information of 2015 and 2016, Table 13 shows that the model 5 provides the smallest

error but the model 3 provides a similar result. The best performance for all the models happens

in the last term. Looking at the different terms, models 5, 6, 3, and (again) 5 are the best ones for

each term. As previously, the model 8 presents the worst global performance.

[INSERT TABLE 13 AROUND HERE]

Therefore, we have illustrated that the model with the best in-sample behavior is not neccesarily

the best forecasting model. Moreover, we can conclude that there is not a clear winner model from

an out-of-sample point of view.

5.3 Two-factor model

We analyze now the Bacaicoa et al. (2014) model that introduces the convenience yield as second

factor. Table 14 presents our estimates and the sum of squared errors. We can see that the second

and third closest-to-maturity futures present, respectively, the lowest and highest estimation errors.

[INSERT TABLE 14 AROUDN HERE]

Figure 8 shows the observed and fitted futures prices under this model. We can see a very good

fit, outperforming any previous one-factor model. Figure 9 includes the spot price, the price of the

fifth closest-to-maturity futures, and the convenience yield. Financial theory says that futures are

typically in contango because the futures price is the compounded spot price. However, the presence

of a convenience yield implies that a futures can be in contango or in backwardation depending

whether the interest rate is, respectively, higher or lower than the convenience yield. This figure

shows that the CO2 futures market is in contango until 2015 but, from then on, the convenience

yield is close to the interest rate and, then, futures quotations are close to spot prices.

[INSERT FIGURES 8 AND 9 AROUDN HERE]

20



6 Conclusions

CO2 emissions are currently a very important issue with relevant implications in the global context

due to the pernicious effects of these emissions on the atmosphere and global warming. This paper

focuses on the analysis of futures on CO2 emission allowances and tries to find the most adequate

model in order to make both in- and out-of-sample estimations. To this aim, we have compared

different specifications of the Moreno et al. (2019) model versus the models proposed in Schwartz

(1997) and Lućıa and Schwartz (2002). In addition, we have also introduced a two-factor model.

Moreno et al. (2019) proposed initially their model for prices of energy futures, which present

long-term flctuations in the level of mean-reversion and seasonality, using Fourier series to repre-

sent these seasonal and cyclical components. The possible advantages of this model come from its

flexibility to allow long-term oscillations in the level of mean-reversion withouth imposing any con-

straints on the frequencies to be estimated in the Fourier series. This model also provides closed-form

expressions for the prices of different derivatives and, specifically, for futures prices.

We have used EUA data from 2009 until 2018 and we have estimated the models proposed in

Schwartz (1997), Lućıa and Schwartz (2002), seven versions of the model in Moreno et al. (2019),

and a two-factor model (Bacaicoa et al., 2014) that also uses Fourier series to estimate cyclical com-

ponents. One-factor models have been estimated by applying non-linear least-squares regressions.

We have performed the estimations by considering different alternatives: a) for the whole sample,

b) from the first available data until the end of 2012 (final moment of the Kyoto protocol), c) from

2013 until March, 2018, period in which the protocol is prolonged, thanks to the 2012 Doha summit

and d) yearly estimates.

The in-sample empirical analysis shows that the model 9 (including three seasonal components

and no frequency in the long-term oscillations in the level of mean-reversion) is the most adequate

model in all the periods under study. However, in several cases, the improvement with respect to

models 3 to 8 is not very noticeable. We can highlight that all the versions of the Moreno el al. (2019)

model outperform the models in Schwartz (1997) and Lućıa and Schwartz (2002). Then, we conclude

that the introduction of seasonality with the Fourier series improves the in-sample estimation.

Out-of-sample estimates are obtained for the period 2016-2017 by applying the Kalman filter.

The different versions of the Moreno et al. (2019) model do not seem so adequate as in the in-sample

analysis since the sum of squared errors do not differ significantly from those obtained for the models

in Schwartz (1997) and Lućıa and Schwartz (2002). Models 7 and 4 provide the best forecasting

behavior for respectively, 2016 and 2017. Hence, we conclude that the different cases embedded in

Moreno et al. (2019) are adequate to perform the in-sample estimations but they are not so good

for prediction purposes.

Finally, the two-factor model introduced in Bacaicoa et al. (2014) has been estimated by applying
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also the Kalman filter, with the convenience yield as non-observable variable. We have checked that

this model outperforms all the one-factor models as it provides a better fit to the data under analysis.

As future research lines, we can analyze the empirical behavior of the one-factor models analyzed

in this paper to explain prices in electricity markets. We can also study the forecasting performance

of the two-factor model presented in Bacaicoa et al. (2014). A final avenue for further research can

be to enlarge this two-factor model by considering the different versions of the Moreno et al. (2019)

model.
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SCR, seasonality, and long-term oscillations. Sample period: first available data - 2018.∑
tminSCR(θ̂t) C2 C3 C4 C5 C6

Model 1 8.15 18.92 17.51 18.89 29.46

Model 2 8.08 18.72 17.40 18.83 29.42

Seasonality (years) 1 1 1 1 1

Improvement over model 1 (%) 0.83 1.08 0.63 0.33 0.14

Model 3 7.002 14.70 10.00 7.33 11.34

Long-term swing (years) 20.5 20.5 20.5 20.5 20.5

Improvement over model 2 (%) 13.39 21.42 42.53 61.08 61.47

Model 4 6.95 13.85 8.77 5.59 8.79

Long-term swing (years) 13 13 13 13 13

Seasonality (years) 4.5 4 4 3.5 3.5

Improvement over model 3 (%) 0.74 5.78 12.30 23.74 22.49

Model 5 6.69 13.63 8.80 5.62 8.46

Long-term swing (years) 14 14 14 14 14

Seasonality (years) 8.5 4 4.5 3.5 3.5

Seasonality (years) 8.5 4 4.5 10 10

Improvement over model 4 (%) 3.74 1.59 -0.34 -0.54 3.75

Model 6 6.67 13.41 8.72 5.74 8.09

Long-term swing (years) 13.5 13.5 13.5 13.5 13.5

Seasonality (years) 3.5 7 7 5 3

Seasonality (years) 1.5 7 4 5 3

Seasonality (years) 3.5 3 4 5 3.5

Improvement over model 5 (%) 0.30 1.61 0.91 2.14 4.37

Model 7 6.92 14.84 9.53 6.04 9.53

Seasonality (years) 10 10 10 10 10

Improvement over model 2 (%) 14.36 20.73 45.23 67.93 67.61

Model 8 6.62 13.57 8.74 5.74 8.56

Seasonality (years) 5.5 10 5 4.5 3.5

Seasonality (years) 10 5 10 8 10

Improvement over model 7 (%) 4.34 8.56 8.29 4.97 10.18

Model 9 6.51 13.27 8.61 5.80 8.46

Seasonality (years) 7 7.5 4 6 10

Seasonality (years) 6 7 10 6 3.5

Seasonality (years) 6 3 1 1 1

Improvement over model 8 (%) 1.66 2.21 1.49 -1.05 1.17

Table 4: Sum of squared pricing errors, seasonal periods, long-term swing in the mean-reversion

level, and statistical improvement of each model. Sample: first available data until 2018.

31



P
ar
a
m
et
ri
c
es
ti
m
at
io
n
s,

si
n
ce

av
ai
la
b
le

d
at
a
u
n
ti
l
20

13
.

P
ar
am

et
er
s

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

M
od

el
5

M
od

el
6

M
od

el
7

M
od

el
8

M
od

el
9

S
T
R
U
C
T
U
R
A
L
P
A
R
A
M
E
T
E
R
S

α
6.
06

20
(0
.2
15

8)
5.
73

35
(0
.1
73

4)
3.
02

12
(9
8.
72

83
)

-0
.5
86

6
(0
.3
43

1)
3.
91

63
(0
.0
69

8)
9.
37

37
(0
.1
52

6)
0.
23

14
1
(0
.1
82

8)
1.
77

90
(0
.0
29

6)
1.
85

59
(0
.0
23

9)

σ
2

0.
00

00
(0
.0
00

0)
0.
00

00
(0
.0
00

0)
0.
00

00
(0
.0
00

0)
6.
80

79
(0
.4
03

9)
6.
90

84
(0
.3
06

0)
7.
22

07
(0
.2
66

2)
7.
86

55
(0
.4
54

7)
5.
00

78
(0
.2
30

6)
7.
37

08
(0
.2
20

1)

κ
0.
16

63
(0
.0
10

2)
0.
18

71
(0
.0
08

6)
0.
82

51
(1
6.
72

25
)

2.
07

68
(0
.0
36

0)
3.
36

24
(0
.0
69

6)
3.
43

68
(0
.0
60

6)
1.
22

71
(0
.0
21

4)
2.
66

70
(0
.0
39

8)
3.
38

63
(0
.0
55

2)

γ
-

0.
03

12
(0
.0
00

7)
-

-
-

-
-

-
-

ϕ
-

0.
20

46
(0
.0
04

1)
-

-
-

-
-

-
-

B
x

-
-

0.
72

97
(2
19

.8
13

6)
0.
99

48
(0
.3
41

7)
-6
.0
76

8
(0
.1
34

7)
1.
10

14
(0
.0
42

5)
-

-
-

B
y

-
-

-0
.0
09

3
(1
45

.8
11

4)
-2
.1
41

9
(0
.2
15

4)
5.
17

09
(0
.1
05

6)
1.
72

44
(0
.1
20

2)
-

-
-

ω
z

-
-

2π
0.
10

(1
86

.7
92

6)
2π

0.
10

(0
.0
49

6)
2π

0.
05

82
(0
.0
02

1)
2π

0.
05

22
(0
.0
06

4)
-

-
-

P
er
io
d

-
-

10
ye
ar
s

10
ye
ar
s

10
ye
ar
s

17
ye
ar
s

-
-

-

S
E
A
S
O
N
A
L
P
A
R
A
M
E
T
E
R
S

C
2

A
x
,1

-
-

-
0.
46

86
(0
.0
23

7)
-0
.0
72

7
(0
.0
02

4)
2.
36

01
(0
.2
59

0)
0.
58

57
(0
.0
15

3)
14

.4
10

1
(0
.6
65

7)
-1
.6
24

7
(0
.0
58

1)

A
y
,1

-
-

-
-0
.3
63

6
(0
.0
25

3)
-0
.0
03

2
(0
.0
05

8)
1.
35

21
(0
.1
21

0)
0.
34

29
(0
.0
57

8)
-4
.2
42

7
(1
.8
97

7)
-0
.4
88

1
(0
.1
70

4)

ω
f
,1

-
-

-
2π

0.
22

45
(0
.0
17

1)
2π

0.
86

49
(0
.0
42

9)
2π

0.
50

24
(0
.0
18

4)
2π

0.
10

(0
.0
36

1)
2π

0.
22

44
(0
.0
24

5)
2π

0.
25

42
(0
.0
30

3)

P
er
io
d

-
-

-
4.
5
ye
ar
s

1
añ
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ñ
o

3
.5

y
e
a
rs

-
2
.5

y
e
a
rs

2
y
e
a
rs

A
x
,3

-
-

-
-

-
-0
.0
9
6
5
(0
.0
2
9
)

-
-

-0
.0
3
3
7
(0
.0
1
6
2
)

A
y
,
3

-
-

-
-

-
-0
.0
5
0
9
(0
.0
1
0
1
)

-
-

-0
.2
2
9
8
(0
.0
2
0
1
)

ω
f
,3

-
-

-
-

-
2
π
0
.8
0
7
2
(0
.0
4
6
6
)

-
-

2
π
0
.7
3
2
2
(0
.0
4
0
7
)

P
e
ri
o
d

-
-

-
-

-
1
.5

y
e
a
rs

-
-

1
.5

y
e
a
rs

C
4

A
x
,1

-
-

-
-0
.2
3
9
9
(0
.0
1
1
4
)

0
.3
6
2
1
(0
.1
5
8
1
)

2
0
.8
8
9
9
(0
.7
6
4
6
)

-0
.2
2
6
4
(0
.0
1
1
0
)

0
.8
1
5
9
(0
.0
3
2
9
)

-0
.2
2
1
3
(0
.0
1
3
9
)

A
y
,1

-
-

-
0
.0
0
6
5
(0
.0
1
8
5
)

-2
.3
2
9
0
(0
.0
6
4
3
)

1
.0
8
2
8
(0
.1
5
1
8
)

0
.6
9
9
9
(0
.0
2
8
1
)

-0
.2
2
1
8
(0
.0
3
6
6
)

-0
.0
4
6
4
(0
.0
1
6
2
)

ω
f
,1

-
-

-
2
π
0
.3
6
7
8
(0
.0
2
9
6
)

2
π
0
.1
6
3
9
(0
.0
1
7
5
)

2
π
0
.2
8
6
7
(0
.0
1
9
9
)

2
π
0
.2
4
6
2
(0
.0
4
7
4
)

2
π
0
.1
0
1
4
(0
.0
1
8
6
)

2
π
0
.3
1
7
7
(0
.0
3
2
7
)

P
e
ri
o
d

-
-

-
3
y
e
a
rs

6
y
e
a
rs

3
.5

y
e
a
rs

4
y
e
a
rs

1
0
y
e
a
rs

3
y
e
a
rs

A
x
,2

-
-

-
-

-0
.0
4
0
2
(0
.0
5
8
9
)

-2
1
.5
7
2
8
(0
.7
6
3
7
)

-
-0
.0
6
9
5
(0
.0
0
3
6
)

-0
.0
5
6
3
(0
.0
1
1
5
)

A
y
,2

-
-

-
-

0
.0
5
8
9
(0
.0
0
3
2
)

-1
.4
0
0
9
(0
.1
4
3
2
)

-
-0
.0
4
4
7
(0
.0
0
5
1
)

-0
.1
9
5
9
(0
.0
1
6
2
)

ω
f
,2

-
-

-
-

2
π
0
.8
7
6
6
(0
.0
3
9
5
)

2
π
0
.2
8
5
1
(0
.0
1
8
6
)

-
2
π
0
.7
4
6
3
(0
.0
3
1
0
)

2
π
0
.2
0
3
4
(0
.0
2
1
3
)

P
e
ri
o
d

-
-

-
-

1
a
ñ
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ñ
o

∑ t
m
in

S
C
R
(θ̂

t
)
=

∑ t
û
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SCR, seasonality, and long-term oscillations. Sample period: first available data - 2012.∑
tminSCR(θ̂t) C2 C3 C4 C5 C6

Model 1 1.13 2.20 1.36 1.04 1.25

Model 2 1.08 1.99 1.24 0.99 1.20

Seasonality (years) 1 1 1 1 1

Improvement over model 1 (%) 4.9 9.46 8.53 5.26 4.05

Model 3 1.06 1.82 1.03 0.74 0.94

Long-term swing (years) 10 10 10 10 10

Improvement over model 2 (%) 1.61 8.51 17.49 25.11 22.29

Model 4 0.88 1.48 0.93 0.72 0.74

Long-term swing (years) 10 10 10 10 10

Seasonality (years) 4.5 4 3 2 3.5

Improvement over model 3 (%) 16.75 18.51 6.54 3.17 21.11

Model 5 0.84 1.30 0.99 0.84 0.65

Long-term swing (years) 10 10 10 10 10

Seasonality (years) 1 6 6 2.5 2

Seasonality (years) 6 1 1 2.5 1

Improvement over model 4 (%) 4.54 12.34 -6.29 -16.70 11.29

Model 6 0.84 1.26 0.98 0.87 0.69

Long-term swing (years) 17 17 17 17 17

Seasonality (years) 2 2.5 3.5 2 2

Seasonality (years) 1.5 3.5 3.5 2 2

Seasonality (years) 2 1.5 1 2 2

Improvement over model 5 (%) 0.02 2.88 0.84 -3.93 -6.13

Model 7 0.93 1.67 1.05 0.77 0.79

Seasonality (years) 10 8 4 10 10

Improvement over model 2 (%) 13.13 16.28 15.77 21.87 34.66

Model 8 0.89 1.41 0.89 0.75 0.64

Seasonality (years) 4.5 2.5 10 2.5 1

Seasonality (years) 4.5 2.5 1.5 2 1

Improvement over model 7 (%) 4.81 15.51 15.33 3.36 19.09

Model 9 0.85 1.25 1.01 0.72 0.64

Seasonality (years) 4 2 3 2 1.5

Seasonality (years) 4 2 5 1.5 1.5

Seasonality (years) 1 1.5 1 1 1.5

Improvement over model 8 (%) 3.85 10.85 -13.82 2.93 0.31

Table 6: Sum of squared pricing errors, seasonal periods, long-term swing in the mean reversion

level, and statistical improvement of each model. Sample: first available data until 2012.
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SCR, seasonality, and long-term oscillations. Sample period: 2013-2018.∑
tminSCR(θ̂t) C2 C3 C4 C5 C6

Model 1 5.98 13.17 10.76 10.56 16.95

Model 2 5.99 13.19 10.72 10.50 16.87

Seasonality (years) 1 1 1 1 1

Improvement over model 1 (%) -0.21 -0.16 0.32 0.53 0.47

Model 3 5.79 12.47 8.04 4.96 8.47

Long-term swing (years) 10 10 10 10 10

Improvement over model 2 (%) 3.35 5.45 25.05 52.75 49.79

Model 4 5.30 10.84 6.92 4.45 7.03

Long-term swing (years) 11.5 11.5 11.5 11.5 11.5

Seasonality (years) 7 7 7.5 7.5 8

Improvement over model 3 (%) 8.46 13.09 13.92 10.23 17.07

Model 5 5.29 10.70 6.91 4.28 7.00

Long-term swing (years) 13.5 13.5 13.5 13.5 13.5

Seasonality (years) 4 4 4.5 1.5 6

Seasonality (years) 4 4 4.5 6 6

Improvement over model 4 (%) 0.22 1.30 0.14 3.85 0.38

Model 6 5.37 10.65 6.90 4.32 6.92

Long-term swing (years) 13.5 13.5 13.5 13.5 13.5

Seasonality (years) 3.5 3 3.5 5 4

Seasonality (years) 3.5 3 3.5 2 4

Seasonality (years) 3.5 2.5 3 2 4.5

Improvement over model 5 (%) -1.51 0.47 0.14 -0.93 1.14

Model 7 5.44 11.14 7.05 4.38 7.17

Seasonality (years) 4.5 4.5 5 5 5

Improvement over model 2 (%) 9.18 15.54 34.24 58.29 57.50

Model 8 5.29 10.67 6.91 4.45 6.98

Seasonality (years) 8 9 6.5 6 6

Seasonality (years) 8 9 7.5 6 6

Improvement over model 7 (%) 2.76 4.22 1.99 -1.60 2.65

Model 9 5.27 10.55 6.77 4.35 6.79

Seasonality (years) 5 8.5 7 6.5 6.5

Seasonality (years) 5.5 9 7 6.5 6

Seasonality (years) 4.5 6 1 1 1

Improvement over model 8 (%) 0.38 1.12 2.03 2.25 2.72

Table 8: Sum of squared pricing errors, seasonal periods, long-term swing in the mean reversion

level, and statistical improvement of each model. The sample period is 2013-2018.
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2-factor model.

Estimation of parameters

α κ σ 2πω correlation Ax Ay Ax2 Ay2

3.2262 0.0018 0.0000 2π0.1316 -0.0776 0.9728 0.9623 1.0910 1.0146

∑
u2 C2 C3 C4 C5 C6 TOTAL

0.0009 11.0571 0.0034 0.0056 0.0078 11.0748

Table 14: Estimation of the parameters of the two-factor model and squared errors for each futures.

The sample period is from 2013 until 2018.
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Appendix of Figures

Figure 1: Time series of prices of futures c1 to c7 and spot price for the whole sample (first available

data until 2018).
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Figure 2: Spot price and fitted prices for the futures c5 under the nine models. The sample period

for this futures is from 29, December, 2010 until 9, March, 2018.

Figure 3: Spot effect and observed log-price of the futures c2. The sample period is from 27,

October, 2009 until 9, March, 2018.
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Figure 4: Decomposition of the four effects in model 5 for the futures c2. The sample period is from

27, October, 2009 until 9, March, 2018.

Figure 5: Estimation of the level of mean-reversion (long-term swing) for the prices of the futures

c2 to c6.
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Figure 6: Spot price and fitted prices for the futures c2 under the nine models. The sample period

for this futures is from 27, October, 2009 until 9, March, 2018.

Figure 7: Spot price and fitted prices for the futures c5 under the nine models. The sample period

for this futures is from 2013 until 9, March, 2018.
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Figure 8: Spot price and fitted price for the futures c5 under the two-factor model. The sample

period for this futures is from 2013 until 9, March, 2018.

Figure 9: Price of the futures c5, spot price, and convenience yield from 2013 until 9, March, 2018.
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