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Abstract

Hydropower plants are key assets to produce decarbonized energy and limit Greenhouse

Gas (GHG) emissions from the power sector industry. Hence, they are prominent in the fight

against climate change. However, the generation of hydroelectricity relies heavily on climate

conditions, water availability specifically. This work investigates the impact of climate change

on water availability and on hydropower production around the world. We use localized drought

conditions as a proxy for water availability. We find that hydropower production is linked to

localized drought conditions, with low production events happening during periods with higher

drought. We then use this relationship to forecast the electricity production of existing plants

under various climate scenarios and we translate the variation of production into the Levelized

Cost of Energy of the power plants. Finally, we aggregate the results at company level. A

company’s risk exposure is essentially influenced by two parameters: the localization of its

hydropower plants and the share of hydropower plants in its portfolio. We find that in general,

some companies in South America are most at risk as they are located in regions where drought

occurrences likely will increase and their assets are often focused on hydropower.

1 Introduction

The impact of climate change on the economy is becoming more and more material. Morgan Stanley

Research [14] estimates the global cost of climate related disasters between 2016 and 2018 at a total

of 650$ billion. In a 2020 report, SwissRe [20] stated that the growing trend in economic losses from

extreme weather events has two origins: (1) the accumulation of assets in more exposed regions

(coastal areas, etc.) resulting from urbanization and economic growth and (2) the changing climate.

Forward looking studies are necessary to track the effects of climate change to uncover the geograph-

ical areas and sectors most at risk. Physical risk is defined by the Task Force on Climate-related

Financial Disclosures (TCFD) [21] as the risk related to the physical impact of climate change.

It can be either event driven or related to long-term changes in climate patterns. The aim of this
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study is to focus on the financial impact of climate change on hydropower plants, at a company level.

Hydroelectricity is a major provider of decarbonized electricity1 and is a valued ally in the fight

against climate change. It contributes to more than 15% of total generated electricity and currently

is the largest source of renewable electricity generation. Any impact of climate change on the hy-

droelectricity production might lead to an uptake in the use of fossil-based electricity and interfere

with decarbonization efforts. Investigating the role of climate change in future water availability and

the related impact on hydroelectricity production is important to ensure that this key decarbonized

capacity fulfills its role in the energy transition.

The occurrence of drought periods leads to reduced water availability and can impact power gen-

eration from hydropower and thermal plants2. This can lead to substantial financial damages for an

asset, an operating company and the energy system as a whole, as illustrated by recent events. For

example, between 2011 and 2014 in California, the increase in the cost of producing electricity from

the droughts was estimated to $1.4 billion (Gleick [9]). These costs include the recourse to electricity

from gas thermal plants, wind and solar production facilities as well as out-of-state electricity, all

more expensive options used to make up for the loss of hydroelectricity3, leading to a higher overall

cost of producing electricity.

Several studies have explored the link between water availability and hydropower production.

Van Vliet et al. [22] found that during drought years, global hydropower plant utilization rate

was reduced by 5.2% compared to a 1981-2010 average. Moreover, major drought years produced

statistically significant reductions in used capacities. A similar approach was used by Falchetta et

al. [6] to assess the vulnerability of the power sector for the case of Malawi, using a combination

of satellite data (precipitation, temperature, Standardised Precipitation Evapotranspiration Index

(SPEI) and soil moisture) to model river discharge deviation and the hydroelectricity capacity fac-

tor. They found that extreme events impact both electricity production and its final use, allowing

for better understanding of climate vulnerabilities. Similarly, Gleick [9] found a statistically relevant

link between water runoff and hydropower generation in California, explaining the cause of the lower

share of hydropower in the Californians electrical mix during drought years. Finally, Byers et al.

[4] estimated that, with climate change under a RCP 8.5 scenario, almost 50% of total freshwater

thermal capacities can become unavailable in an extreme day of drought. Moreover, the median

impact of extreme days of drought in the UK exceeds £100 million per year. If this average impact

seems limited, severe regional disparities exist and should be documented (Berga [3]).

We seek to estimate the effect of these regional disparities on hydropower production companies,

1The term of “decarbonized” for hydroelectricity is disputed on account of the lifecycle emissions of the cement
needed to build the dams.

2We separate both effects as lower hydropower production is directly linked to lower water availability. For thermal
power plants, the link is indirect: decrease in water availability reduces cooling capacity thus lowering production.

3Hydropower is generally considered one of the cheapest way to produce electricity, see for example https:

//irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA\ Power\ Generation\ Costs\ 2019.pdf.
(Accessed: 22/03/2021.)
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to uncover the regions most at risk from drought. The financial impact is derived using a classical

IPCC framework [12], where the risk is a combination of physical hazards, exposure, and vulnerabil-

ity. The Network for Greening the Financial System (NGFS) published a report [16] acknowledging

the exposure of financial systems to the impacts of climate change. Based on the IPCC framework,

it provides a four-step process to estimate climate risk to the economy, adapted to our context:

Step 1: Identify objective and exposure

The objective is to make projections on
hydropower production, using the evolution
of a drought index depending on different
climate scenarios.

Step 2: Choose climate scenarios
Climate scenarios were selected from publicly
available sources.

Step 3: Assess economic and financial impacts
Economic impact is derived in terms of changes
in revenues and produced power cost.

Step 4: Communicate and use results
Our work provides a global analysis for utility
companies which could use it for investment
planning.

The risk is defined by two complementary metrics, allowing for an extensive analysis of the

financial impact of climate change on hydropower plants:

• A long-term trend, focusing on long-term evolution of production and the consequences on the

financial profitability of the company;

• The increase in occurrences of extreme events, where hydropower electricity production needs

to be replaced by other sources.

Overall, this study constitutes a deep dive into understanding how climate change could affect

the profitability and risk of power companies. It is complementary to the work of Lorans et al [13]

that implemented a top-down approach to study the effect of climate change on sovereign bonds.

Here, we adopt a sectoral view and look at how specific weather events impact a specific activity.

We aim to estimate a robust relationship that we can test at world level, without developing

a complete hydroclimate model of water runoff which would require too much information for this

study. Thus, we apply a more pragmatic approach and use the SPEI index to model the capacity

factor of power plants. A complete hydroclimate model could be implemented in a subsequent

analysis, should the result of this study prove useful to measure physical climate risk on companies.

2 Methodology

Two aspects are studied: (1) the impact of climate change on average production of hydropower

plants and (2) the impact of climate change on the occurrences of extreme low production events.

Figure 1 provides graphical insight on the information we extract from both the SPEI and capacity

3



factor4 data.

Figure 1: SPEI and yearly capacity factor for a single hydropower plant.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data.

Note: A low SPEI value indicates drought.

Schematically, the blue oval represents the first indicator: a period of increased drought is linked

to an overall lower capacity factor. The green oval represents the second indicator: periods of ex-

treme droughts correspond to periods of low production.

Average production is defined as the 1-year average of monthly production. An extreme low

production event is defined as a 1-year average production 50% lower than the 10-year average

production. These impacts are complementary, as focusing solely on the average production un-

derestimates the overall impact of the increase of occurrences of extreme lows. Both impacts are

compared over three periods:

• The historical period: 1970-2015;

• The medium-term period: 2020-2050;

• The long-term period: 2070-2100.

4The capacity factor is defined as Production
30∗24∗Capacity

and is used to normalize individual plant productions. Please

note that here that we are considering a monthly production. In the following, the capacity is assumed constant over
time, and the capacity factor is directly linked to production
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The impact of climate change on average production can be translated into a variation in the

Levelized Cost of Energy (LCOE) of the plants. The LCOE measures the lifetime cost of producing

electricity and is commonly used to compare technologies or measure the viability of a project. It

is the ratio between the discounted costs over a lifetime of a power plant divided by the discounted

sum of actual energy produced (Lai & McCulloch [11]). Data for LCOE calibration are derived from

the National Renewable Energy Laboratory (NREL) [17] 5. The sum of actual energy produced is

a function of the capacity factor of the plant: if it decreases, the LCOE increases. We measure the

impact of drought on the capacity factor through the following model:

CF 1−yr = α+ β0 ∗ SPEI1−yr + β1 ∗ CF10−yr + ϵ

where:

• CF 1−yr is the 1-year average capacity factor;

• SPEI1−yr is the 1-year average SPEI;

• CF 10−yr is the 10-year average capacity factor.

This specification expands the work of Gleick [9] and adapts it for drought conditions. Here, the

1-year capacity factor is a function of the 1-year average SPEI and an overall trend measured by the

10-year average capacity factor. The 1-yr moving average is used to smooth out the effect of exoge-

nous parameters (seasonality, short-term management decisions, etc.) on hydropower production.

Electricity production is then modelled as the combination between a long-term trend representing

the different long-term parameters of the power plant (long-term climatic cycle, long-term manage-

ment decisions, etc.) and a more immediate adjustment for the localized drought. Because long-term

parameters are not observable, we use the 10-yr moving average of production as a proxy.

The impact of climate change on low-production extremes is modelled through a copula model.

This method studies the nature of the link between periods of extreme droughts and extreme low-

production. It builds upon the idea developed by Falchetta et al. [6]. We use the following method:

• We build the following variables: the capacity factor ratio, T =
CF1−yr

CF10−yr
, and the 1-year average

SPEI, S = SPEI1−yr

• We estimate the empirical copula between S and T

• We compute the new T following a change in S due to climate change

5In particular, we used the default calibration for the discounting factor. Expansion of this work should include
sensitivity testing of this parameter
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3 Data and calibration of the model

3.1 Data

Towards building projections of hydropower plants electricity production using a drought index, the

following data are used:

• For model calibration:

– Historical electricity production of multiple US hydropower plants, with several parame-

ters such as location and nominal capacity;

– Historical data on localized drought;

• For model application:

– Locations and size of hydropower plants around the world;

– Modelled data on localized drought;

Historical data of electricity production from power plants is retrieved from the US Energy Infor-

mation Administration (EIA): the EIA-923 form [8] reports monthly and annual power production

of different power plants throughout the United States; the EIA-860 form [7] provides supplementary

information on those plants, including precise location, nominal capacity, type of plant and owner.

The data spans from 1970 until 2018. To test the results at a global level, the model is applied

to the plants listed in the Enerdata PowerPlant Tracker database [18], which gives information on

capacities and locations of utilities worldwide. Company names are also given in that database,

allowing for a corporate overview.

The drought index used is the Standardised Precipitation Evapotranspiration Index (SPEI) [1].

It is a measure of drought that accounts for both precipitation and potential evapotranspiration

(PET). For historical SPEI, we used data from Begueŕıa et al. [2]. For each plant, the local SPEI

corresponds to the value of the SPEI geographically closest to the coordinates of the power-plant6.

For projected SPEI, we use data from the European Commission Joint Research Center (JRC) [15].

This dataset provides projections forecasts for the SPEI in a RCP 8.5 scenario and for seven climate

models. The results presented here are the aggregation between the results obtained for each model.

More details on data characteristics can be found in Appendix B.

3.2 Model calibration

The model is calibrated using monthly production from hydropower plants located in the United

States. The results obtained for both models are outlined below, with more details available in

Appendix C.

6The historical SPEI has a spatial resolution of 0.5°, providing a good proxy of drought conditions in the hydropower
plant surroundings
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3.2.1 Impact of climate change on average production

In Section 2, we introduced the following model:

CF1−yr = α+ β0 ∗ SPEI1−yr + β1 ∗ CF10−yr + ϵ

Table 1 presents the coefficients estimated using a fixed-effect panel estimator.

Coefficient value
SPEI (12 months) 0.057***
Capacity factor (10-yr) 0.884***
Adj R-square 0.49
F-test (p-value) <2.22e-16

Table 1: Estimation results for the two models.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

.

The quality of the models is acceptable, with an Adjusted R-Square equal to 0.49 and all coef-

ficients statistically different from 0. The sign before the SPEI indicator is as expected: a higher

level of SPEI leads to a higher level of production thus to a higher capacity factor.

3.2.2 Impact of climate change on the occurrences of low-production extremes

Observations from the model show that low values of the 1-year average SPEI S correspond to low

values of the capacity factor ratio T , and that the same effect occurs with high values. This means

that the distribution of T given a low value of S is different from the distribution of T given a

medium or high value of S. To describe this dependency, we use a Frank copula with the following

parameters (estimated based on the empirical data): Par = 4.61,τ = 0.43 (see Appendix C for more

details). Further work could be implemented to test other copulas.

We use the following steps to estimate the probability of an extreme low production7, based on

projected SPEI (adapted from Simard et al. [19]):

• Step 1: Estimate the copula between T and S, using empirical data;

• Step 2: Set the cumulative distribution function of S based on projected SPEI data;

• Step 3: Simulate observations using the estimated copula;

• Step 4: Compute the cumulative distribution of T , based on the observation simulated by the

copula;

• Step 5: Estimate P (T̂ < 0.5), the probability of having a capacity factor that is 50% lower

than the long-term average.

7Defined in Section 2 as a yearly production 50% lower than the long-term production
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Thus, for step 2 and step 4, we estimate cumulative distribution functions that remain constant

over time. They are approximated by normal distributions, using the empirical data. Table 2

outlines the parameters:

T S
Distribution Normal Normal

Parameters
Mean 0.99 0.09
Std 0.28 1.05

Table 2: Distribution estimation for T and S

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

A key assumption of our work is that estimations based on US data remain valid at global level.

Because of the disparities in climate throughout the United States and the number of hydropower

plants included in the estimation process, generalization of the relation is possible to some extent,

and our models has good performance even on out-of-sample power plants (see Appendix D for in-

and out-of-sample results benchmarking). However, work is currently undergoing to improve our

model by adding hydropower plants located in other parts of the world.

4 Application to global assets

The methodology is applied to all plants with a capacity larger than 50MW from the Enerdata

PowerPlant Tracker database8. For the two risks studied, results are given at asset and company

level.

4.1 Impact of climate change on average production

For some hydropower plants, an estimate of the yearly capacity factor is given by the PowerPlant

Tracker database. When available, it is used in our model. For plants where this information is

missing, the global mean is taken as input. To reduce the bias effect of this imputation method,

results can only be interpreted compared to the baseline value.

There is an inverse relationship between the capacity factor (and production) and the LCOE:

all things being equal, a lower production implies lower capacity factor and lower electricity flows

to sell, thus increasing the overall cost of the plant. As the theoretical cost of producing electricity

increases, the plant becomes less competitive. Plants where the capacity factor is expected to decline

show a rising LCOE.

8It should be noted that the existence of the dams is not guaranteed until 2100. However, given current needs
for electricity and given that hydropower plants are a major source of low-carbon electricity, current locations are
assumed to be a good proxy of future dam locations.
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In Figure 2, hydropower plants located in southern Europe, central Brazil and the central United

States appear to be most at risk. South-East Asia seems relatively preserved: in this region, droughts

are expected to decrease, thus the capacity factor of power plants increases. However, this result is

only theoretical, as other negative impacts in the RCP8.5 scenario, such as floods, are not accounted

for in the model.

Figure 2: Variation of the theoretical LCOE medium (upper) and long-term (lower) periods - RCP
8.5 scenario

Source: LSEG SI Research, based on JRC data. Note: A positive LCOE variation reflects an unfavourable
impact: production prices increases, thus profitability decreases.

Surprisingly, the Nile basin seems relatively spared. This illustrates one caveat of our model:

the flow of the Nile essentially depends on rainfalls in the Upper Nile Basin (covering Ethiopia,

South Sudan and Uganda) and the localized SPEI, based on the location of the power plant, may
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not be the most relevant indicator [5]. Using the SPEI from the Upper Nile Basin could help with

this issue9. More generally, using a water runoff model would probably yield more robust results.

Moreover, our model does not account for river basins that cover multiple countries and make water

availability subject also to political choices.

Figure 3 shows the results for the twenty companies with the largest hydropower capacities

in the RCP8.5 scenario. In the long-term, some companies face an LCOE higher than 300 USD

2015/MWh. This hypothetical value is probably overestimated since, at company level, steps would

be implemented to limit the LCOE increase. Nonetheless, it indicates that these companies own

assets in regions where drought is expected to increase and could put their business model at risk.

Figure 3: Variation of the theoretical LCOE for the medium-term and the long-term for companies
with the largest hydropower capacities.

Source: LSEG SI Research, based on JRC data.

Overall, the evolution of droughts due to climate change could have slightly positive effects for

South-East Asian companies, while companies located in Europe or Brazil are the most at risk.

This risk can be translated into financial terms, with for example an expected 25% increase in hy-

dropower LCOE for Electricité de France (EDF). However, this increase in cost should be analysed

in relation to other business segments of the company. A small increase in LCOE for companies

with only hydropower capacity may be more detrimental than a larger increase for a company where

hydropower plant capacities is a small proportion of total managed capacity.

9In this case, the assumption to use only US data to build our model seems inappropriate: it does not (or not
enough) account for cases where local water availability is dictated by upstream drought severity.
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4.2 Impact of climate change on the occurrences of low production ex-

tremes

This section focuses on the impact of climate change on the probability of extreme low production

events. Our model computes the difference between the baseline (historical) and projected probabil-

ity that the yearly capacity factor will be halved compared to its long-term value. As an example,

a 0.1pp increase means that there are every year 1.2 additional months (in the RCP8.5 scenario)

where plants produce less than 50% of their long-term value.

Figure 4 provides a geographical overview of plants and regions most at risk. The same locations

are highlighted as in Section 4.1: central Brazil and Southern Europe.

Figure 4: Increase of the likelihood of extreme low production for medium (upper) and long-term
(lower) periods - RCP8.5 scenario.

Source: LSEG SI Research, based on JRC data. Note: : pp refers to percentage points. An increase of 0.1pp
means that the probability increases by 10 points compared to the baseline value, or 1.2 supplementary
months per year.

However, not all plants in these regions face the same risk. Figure 5 shows the aggregated

11



probabilities of having an extreme low production for the 20 largest companies10. Interestingly, the

baseline probability is approximately the same for all companies. However, some companies main

hydroelectric assets are located in regions where the occurrence of extreme drought is expected to

increase, impacting the probability of having low production.

Figure 5: Comparison between the baseline, medium- and long-term probability of extreme low
production.

Source: LSEG SI Research, based on JRC data.

Overall, this risk correlates with the long-term production decrease, showing the twofold effect

of climate change and drought modification: it lowers overall production while also increasing the

probability of having extreme low productions. The interesting feature of this work is that it allows

better comparability through a large-scale computation of these metrics. Nonetheless, a plant-by-

plant analysis would certainly yield more precise results.

5 Discussion and conclusion

In this study, US data is used to calibrate a damage function linking a drought index to hydropower

plant production. The estimated model is then used on a worldwide database to identify the areas,

plants and companies most exposed to climate change, with the construction of two indicators: (1)

the LCOE variation and (2) a risk for critically reduced production.

Quite naturally, areas where drought will increase are the most exposed. This allows for company-

level analysis, favouring companies that own plants in various regions rather than concentrated in

10All values are based on simulated data and results should be interpreted with caution, as these results have not
been benchmarked against observed values for individual companies.
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one area. From a financial perspective, this model gives an insight into how physical climate risk

impact on companies’ activities can be integrated into corporate analysis:

• Through the estimation of losses (increase in LCOE can be linked to decrease in profitability);

• Through the construction of a risk-assessment tool for companies.

However, even though the results are interesting, the sectoral focus constrains immediate adop-

tion in global investment strategies. Beforehand, this study should be complemented with the same

approach on all utilities and other sectors. The computation of a probability of impaired activity

could be reproduced on other types of utilities (all thermal power plants need a stable access to water

to function) or other sectors (agricultural yields, impact of climate extremes on different industries,

supply chains, etc.).

This work also illustrates how geolocalized data (the SPEI index) can be used along with asset-

level data to uncover specificities and differentiated impacts depending on location. This is true for

example in large countries such as Brazil or the United States.

Finally, here we only consider impact on plants’ activity. Further analysis could be done to also

include the physical infrastructure damage impact (flooding, destruction of the dam, etc.).

Appendix A: Detailed methodology

In this appendix, we detail the methodology that is used to model the impact of drought condition

change on both the long-term power capacity factor and the occurrence of capacity factor extremes.

Impact of climate change on average production

Our assumption is that localized drought is linked to the capacity factor of hydropowerplants. To

control for the individual capacities of the power plants, we use the capacity factor (or load factor):

CF = P
30∗24∗C , expressed in percentage, where P is the monthly production and C the nominal

capacity.

Thus, the following generic model is used:

ĈF 1−yr = α+ β0 ∗ SPEI1−yr + β1 ∗ CF10−yr + ϵ

Our aim is to compute the 1-year average of capacity factor for future periods, where CF10−yr is

missing. For those periods, it is approximated using the following equation:

ĈF 10−yr = α′ + β′ ∗ CF10−yr + ϵ′
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The method accounts for both the short- and long-term factors influencing the 1-yr average of

production. The final estimate for out-of-sample observations is11 :

C̃F 1−yr = α+ β0 ∗ SPEI1−yr + β1 ∗ ĈF 10−yr

The intention is not to give a precise 1-year forecast of the production. The drought index used is

inadequate for such a study, as is this method of estimation. Rather, our aim is to compare average

capacity factors between periods. The following metrics are used:

• The historical capacity factor, or average historical factor of the power plant:

CFhistorical = mean1970−2015(CF1−yr), CF1−yr =
P1−yr

30∗24∗C with C the nominal capacity.

• The medium-term estimated capacity factor of the power plant:

CFmediumterm = mean2020−2030(C̃F 1−yr), C̃F 1−yr =
P1−yr

30∗24∗C

• The long-term estimated capacity factor of the power plant:

CFlongterm = mean2070−2100(C̃F 1−yr), C̃F 1−yr =
P1−yr

30∗24∗C

The metrics are averaged over these different periods, allowing to consider the overall impact of

drought regime chance. The capacity factor is used to compute the Levelized Cost of Energy (LCOE)

of the powerplants. The comparison between the LCOE’s for different time-periods gives the impact

of drought.

Impact of climate change on the occurrences of low production extremes

The method described above is adequate to account for average trend changes in the SPEI. However,

an effect of climate change on the SPEI will be the multiplication of drought periods. Thus, we build

another model to analyze the change in occurrence and severity of extreme values of SPEI.

We use a copula framework: we estimate the relationship between the deviation of the capacity

factor from its long-term value and the 12-months SPEI (called S for simplicity stake). Two new

variables are introduced; T, the capacity factor ratio and S, the 1-year average SPEI defined as:

T =
CF1−yr

CF10−yr

And

S = SPEI1−yr

Then, the empirical copula C linking both variables is:

C(u1, u2) = P (T ≤ F−1
T (u1), S ≤ F−1

S (u2))

With:

• u1 and u2 are realizations from U1 and U2, two continuous uniform variables;

11In the following, X̂ is the estimation of X and X̃ is the estimation of X where the estimation process uses estimated
data.

14



• FT and FS are the cumulative distribution functions for T and S respectively.

Copulas are used to describe the dependence between random variables and account for non-

linear dependencies12. They are used here to model the fact that low values of SPEI are often

correlated with low values of capacity factors. The future distribution of the SPEI is exogenous and

we use it along with the estimated copula to simulate an expected distribution of T , called T̃ . This

future distribution is estimated, following Simard et al. [19], and we compute P (T̃ < 0.5). Then,

we compare it to P (T < 0.5) to see if the probability increases of having a capacity factor that is

50% lower than the long-term average.

The following metrics are used:

• The historical yearly probability of occurrences of extreme low production POELPhistorical =

P (T1970−2015 < 0.5)

• The medium-term yearly probability of occurrences of extreme low production POELPmediumterm =

P (T̃2020−2050 < 0.5)

• The long-term yearly probability of occurrences of extreme low production POELPlongterm =

P (T̃2070−2100 < 0.5)

The comparison between historical, medium- and long-term probabilities gives a risk measure for

each plant, that can be aggregated at company level. The difference is computed as the difference

between the baseline probability and the medium- or long-term probability of having an extreme

low production, and is expressed in percentage point difference.

Appendix B: Data characteristics

Table 3 below presents the different characteristics of both the SPEI and the capacity factor data.

Capacity factor SPEI (12 months)
N 83 849 89424
Mean 0.37 0.13
Median (IQR) 0.36 (0.22;0.51) 0.14 (-0.66;0.92)
Range 0.00; 1.00 -3.61; 3.38
Missing 5 575 0

Table 3: Univariate characteristics of Capacity factor and SPEI data.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

The capacity factor is located between 0 and 1, with a mean at 0.37. The SPEI follows a normal

distribution, between -3.61 and 3.38. A low SPEI value indicates drought.

12For more details on copulas, see the introduction by Haugh[10] for example.
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Figure 6 shows the result from the bivariate analysis of our variables. The 1-year capacity factor

is heavily correlated with the long-term capacity factor. It shows a correlation of 0.3 with the short

term SPEI. This correlation decreases between the long-term capacity factor and SPEI. Short term

SPEI and long-term capacity factor are uncorrelated, and are usable in the same model.

Figure 6: Bivariate analysis of the variables.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

Appendix C: Calibration details

The appendix below details the results of our calibration.

Impact of climate change on average production

With the notation from Section 2, we define Model 1:

CF1−yr = α+ β0 ∗ SPEI1−yr + β1 ∗ CF10−yr + ϵ

As described in Appendix A, for some plants, CF10−yr is missing, either because they are not in the

training sample, or because we are using projected data. In that case, it is estimated using Model

2:

ĈF 10−yr = α′ + β′ ∗ SPEI10−yr + ϵ′
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The coefficients for both models are estimated using panel regressors. Table 4 shows the results of

the different tests justifying these choices.

p-value Model 1 Model 2
Chow Test <2.2e-16 <2.2e-16
Breusch Pagan test <2.2e-16 <2.2e-16
Hausman Test 0.8302 <2.2e-16
Lagrange FF Multiplier Tests for Panel Models <2.2e-16
F test for individual effects <2.2e-16
Breusch-Pagan test (heteroscedasticity) <2.2e-16 <2.2e-16

Table 4: Results of the different panel tests

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

The Chow test indicates that the pooled model is rejected at level 5% and that the panel model

seems more appropriate. The Breusch-Pagan rejects the null-hypothesis of no cross-sectional depen-

dence, which was expected since some plants from our sample are in the same area. For Model 1, a

random effect model seems more appropriate according to the Hausman test. This is confirmed with

the Lagrange F-test that rejects the null-hypothesis of a pooled model versus a random effect model.

For model 2, the Hausman test rejects the null-hypothesis and a fixed effect model is preferred.

Both models reject the null-hypothesis of homoscedasticity. Next, we test if variables are stationary.

Results are presented in Table 5.

Variable p-value Result
Capacity factor (1-yr) 1.821E-14 The variable is stationary
SPEI (12 months) <2.2e-16 The variable is stationary
Capacity factor (10-yr) 1 The variable is non-stationary
SPEI (10-yr) 1 The variable is non-stationary

Table 5: Panel test results for the different indicators.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

The long-term averages of the variables (capacity factor and SPEI) are non-stationary, as ex-

pected. Given the length of our panel data, we include them, keeping in mind that the regression

for Model 1 might not be consistent.

For Model 1, we use a random-effect panel estimator, while for Model 2 we use a fixed-effect

panel estimator. These estimators normally assume the variables to be stationary, an assumption

that is not met here. However, we are more interested in the long-term relationship between these

variables than in the explanatory power of the SPEI and we keep this estimation technique. Never-

theless, these estimators might not be consistent and further modelling is required to enhance this

relationship. The results are presented in Table 6. The quality of both models is acceptable, with

Adjusted R-Squares equal to respectively 0.38 and 0.49. All coefficients are statistically different

17



from 0. The sign before the SPEI indicator is as expected: a higher level of SPEI leads to a higher

level of production thus to a higher capacity factor.

Model 2 Model 1
Constant 0.355***
SPEI (1-year) 0.057***
Capacity factor (10-yr) 0.884***
SPEI (10-yr) 0.084***
Adj R-square 0.38 0.49
F-test (p-value) <2.22e-16 <2.22e-16

Table 6: Estimation results for the two models.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

Impact of climate change on the occurrences of low production extremes

We use the following steps to estimate the impact of drought on future production extremes :

• Step 1: Estimate the copula between T and S (using the same notation as in Section 3);

• Step 2: Set v = FS(S), where FS is the cumulative distribution function of Ŝ (computed using

forecasted SPEI), estimated on historical data;

• Step 3: Simulate observations from the conditional copula:

U ∼ C(., v)

Where C(., v) is the conditional copula C(., v) = CU |V (u, v)

• Step 4: Compute T̂ = F−1
T (U), where FT is the cumulative distribution of T, estimated using

historical data;

• Step 5: Estimate P (T̂ < 0.5)

Figure 7 plots the distributions of T and S. The SPEI follows a normal distribution, while the

capacity factor ratio is logically strictly greater than 0 with a heavy right-tail. A T value of 1 has

a higher probability of occurrence than in a normal distribution. The left-tail, however, is closer to

normally distributed curve.

Table 7 provides the parameters used to estimate T and S. Both distributions are approximated

by normal distributions. This approximation is satisfactory here though further work should be

conducted to find distributions with a better fit.

Figure 8 shows the relationship between the normalized ranks of the two distributions (left).

This dependence is modelled using a Frank copula, with estimated parameters Par = 4.61,τ = 0.43.
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Figure 7: Distribution for the capacity factor ratio T (left) and the 1-year average SPEI S (right)

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

T S
Distribution Normal Normal

Parameters
Mean 0.99 0.09
Std 0.28 1.05

Table 7: Distribution estimation for T and S

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

Further work could be implemented to test other copulas. The graphic on the right shows this

dependence modelled through the chosen copula.

Using the simulated distribution and copula, Figure 9 presents the empirical and simulated

distribution. The empirical distribution is the same as the left-hand side graph in Figure 7. The

simulated distribution is obtained using the steps describe at the beginning of this section. Following

observations made on Figure 7, the distribution does not fit well on central values and estimation of

the median are expected to be of poor quality. However, the left tail (where the short-term capacity

factor is lower than its long-term value) seems well simulated.The historical value of P (T < 0.5) is

3.5% and the estimated value is 3.5%. Overall the model quality is satisfactory.
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Figure 8: Normalized ranks of T given normalized ranks of S (left) and same relationship estimated
through a copula (right).

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

Figure 9: Empirical and simulated distribution for T .

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

Appendix D: Robustness analysis

This appendix describes the in- and out-of-sample performances of our method. In this analysis,

forecasted data is not included and out-of-sample refers to plants that have not been included in the
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construction of our model.

Impact of climate change on average production

Our goal is to compare the real and estimated capacity factors over the period 1970-2015.

Figure 10 shows the real and estimated values for a single plant. Both 1-year and 10-year es-

timations are of reasonable quality. For the 1-year estimation, both low and high capacity factor

periods are underestimated13. This confirms the need for the short-term approach, where we link

drought extremes to production extremes.

Figure 10: Real and estimated capacity factor for a single power plant.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

Figure 11 shows the performance of our model at estimating average capacity factors over the

period 1970 – 2015. The results are satisfactory. The bar chart represents the absolute median

error, computed as the median over 1970-2015 of absolute error for the 1-year capacity factor esti-

mation. The maximum median error is around 0.10, meaning that the capacity factor is over/under

estimated by 10 percentage points. However, the overall mean error is around 0, meaning that

underestimations are compensated by overestimations.

13Interestingly, there is an inversion for the 10-year capacity factor: the model underestimates the real value before
1995 and overestimates it afterwards. An external factor forcing the plant to run at sub-optimal level after 1995 may
explain this.
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Figure 11: Comparison of average real and estimated capacity factors for in-sample (upper) and
out-of-sample (lower) data.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

Results are of similar quality for out-of-sample plants: the average capacity factor (both 1-year

and 10-year) is correctly estimated. The absolute median error is slightly higher, with maximums at

25 percentage points, though the overall average error remains satisfactory at around 2%. This proves

that our model correctly predicts capacity factors on a long-term average. This is not surprising:
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because we take the average over a very long interval, we neutralize the effect of short-time changes.

Impact of climate change on the occurrences of production extremes

Again, we apply our methodology to two set of in-sample and out-of-sample plants. Three situations

are simulated:

• For each individual plant, we compare P (T < 0.5) with its estimate P (T̂ < 0.5), where each

plant has its own distribution function for T , based on historical data;

• For each individual plant, we compare P (T < 0.5) with its estimate P (T̂ < 0.5), where each

plant has its own distribution function for T , based on estimated data;

• For a random sample of 20 plants, we compare P (T < 0.5) with its estimate P (T̂ < 0.5),

where the distribution is estimated using the estimation for the capacity factors. This case

simulates the fact that, at company-level, results are computed over a set of plants.

Results are presented in Figure 12. The graph in the upper right corner shows the comparison

for the first situation. Using each plant historical distribution, we correctly estimate P (T < 0.5).

However, this is only usable in the case where we have historical data on T, which is rarely the case.

In the second situation, the estimates of the short- and long-term capacity factors are used to build

T. Based on empirical data, it is adjusted to account for the lower variance of the estimates versus

the real values. For a single plant, results are of poorer quality because the number of data points per

plant is insufficient (upper left corner). However, if we aggregate the data for 20 plants (for example,

at company level), results are more satisfactory (bottom graph). Overall, we could significantly en-

hance the quality of our models by using the observed distribution of T . However, this would require

to gather that information at world level and this data is not available. The lower graphs show sim-

ilar results for out-of-sample data, with satisfactory results in the case where we aggregate 20 plants.

Table 8 provides R-square for each model, allowing to measure how simulated probabilities

explain observed ones.

In-sample Out-of-sample
Situation 1: historical distribution for T 0.74 0.88
Situation 2: estimated distribution for T 0.19 0.22
Situation 3: estimated distribution for T and aggregation 0.21 0.24

Table 8: R-squared value for each case.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

Surprisingly, the model has better performance on out-of-sample data. The fact that the historical

distribution will be unknown for most plants is an issue. Nevertheless, we reduce the bias by

comparing estimated values to estimated historical ones. Hence, increase in risk due to lower SPEI

should be computed regarding a baseline and cannot be interpreted in absolute value, if historical

data is not reported.
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Figure 12: Real and estimated values for P (T < 0.5) for the three scenarios for in-sample (upper)
and out-of-sample (lower) data.

Source: LSEG SI Research, based on EIA and SPEI (from Begueŕıa et al.) data

References
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