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Abstract

We present a statistic to generally represent extremes in the distribution
of temperature anomalies and demonstrate its consequences on financial
markets. The diverse shocks that our measure portrays are established
to be primary drivers of electricity consumption and the weather fu-
tures market. We find that this metric is a significant factor in the
cross-section of equity returns in specific industries. A spatial hedging
strategy is developed to account for differentially exposed firms to tem-
perature extremes, resulting in a large market-adjusted alpha for the
least vulnerable firms. We end by explicitly investigating whether the
price reaction to extreme temperatures results from firm operations or
investor attention. In each step of our exercise, we contrast our measure
with average temperature anomalies and demonstrate that our metric
is the first-order feature.
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1 Introduction

Financial markets respond to temperature extremes, but not all shocks are equal. The
equilibrium price of an asset can be affected by changes in temperature due to an adjustment
in investors’ beliefs (Choi et al.| (2020)) or directly through firm-level exposure to temperature
(Addoum et al.| (2021)). Others find a tenuous relationship between temperature fluctuations
and financial outcomes (Addoum et al. (2020)). According to the scientific evidence, the
probability distribution of temperature anomalies has increased by more than one standard
deviation due to climate change since the 1950s (Hansen et al. (2012))). Additionally, the
distribution has broadened, leading to a higher number of temperature extremes experienced
globally. Identifying a relevant representation of changes in temperature distributions is
thus an important aspect of fully understanding changes in temperature extremes, and their
associated impacts on financial and economic outcomes.

To characterize extremes in temperature, we create a spatially dependent statistic that
reflects deviations in temperature variability from its historical mean, on a rolling basis. The
measure, T'D-V AR, describes the unconditional distribution of temperature, which allows
for the general description of spatial changes in temperature extremes over time. The gener-
ality in characterizing extremes with 7'D-V AR means that we are able to treat cold spells as
equally harmful to economic activity as heatwaves. Additionally, we incorporate large fluc-
tuations in day-to-day temperature volatility with the same reasoning. Crucially, through
a battery of validation exercises and asset pricing tests, we assert that changes to historical
temperature variability is a primary driver of financial markets. We continue our analysis
by explicitly disentangling how T'D-V AR affects markets by investigating whether the shock
directly impacts investors’ concerns about climate change or firms.

Throughout the paper, we contrast our methodology with existing literature that high-
lights abnormal temperatures (Addoum et al. (2020)), defined as the number of days in which
temperatures exceed a threshold, sustained over a certain time period, causing an extreme
temperature event. We define this broadly as a temperature anomaly or T'D. Addoum et al.
(2020), |[Pankratz and Schiller| (2021)), and |Choi et al.| (2020]) focus on one side of temperature
anomalies — heatwaves — and are reliant on thresholds to define salient extremes. Others,
such as Addoum et al. (2021)), account for both cold and warm anomalies, yet still use a
form of a priori thresholding. We construct T'D-V AR to reflect the volatility or variability
in temperatures, which is known to affect crop yields (Wheeler et al. (2000), Ceglar et al.
(2016))), human health and mortality (Zanobetti et al. (2011))), economic growth (Donadelli
et al.| (2017), Kotz et al. (2021))), and asset prices (Makridis| (2018)).

We construct ﬁ, the realized monthly anomaly, to serve as a counterpoint to 17'D-
V AR. To build both metrics, we utilize multiple geospatial temperature data sets. The first
covers city-level temperature data from the U.S. National Oceanic and Atmosphere Admin-
istration. The second is a gridded 1-degree latitude by 1-degree longitude daily temperature
data set from Berkeley Earth Surface Temperatures (BEST). After aggregating the data to
the U.S. state and country levels, we illustrate the differences between T'D and T'D-V AR
with a set of realistic theoretical examples at the monthly and daily frequency. The two
measures are then compared and contrasted in each step of our validation and asset pricing



exercises, gradually leading to the conclusion that T'D-V AR is the salient measure.

Our validation exercises begin by confirming that deviations in temperature variability
are a primary driver of energy consumption and prices in weather derivatives. Following
the logic that energy consumption is sensitive to deviations in temperature variability, we
perform a time-series analysis connecting the seasonality of energy demand to the two met-
rics. The analysis produces positive significant coefficients for TD-V AR on aggregate energy
demand, especially in the residential and industrial sectors. In contrast, temperature anoma-
lies only result in a significant positive coefficient for the commercial sector — attributable
to the sector’s steady energy demand. We continue to substantiate our claims by testing
the relationship of the two statistics to the Chicago Mercantile Exchange (CME) weather
futures market, which is intrinsically connected to energy consumption. The combined evi-
dence strongly suggests that fluctuations in temperature variability from its historical mean
is a first-order factor in the highly related energy and weather futures market.

Next, we test whether the differential exposure of firms to temperature shocks affects
the valuation of their stock price. The primary source of variation in our two asset pricing
tests are T'D and T'D-V AR for a firm headquartered in a U.S. state. Our first set of tests
includes monthly cross-sectional return regressions to test the materiality of both tempera-
ture factors on Russell 3000 firms. The results indicate that both metrics are insignificant
when considering firms in aggregate, corroborating the findings of |Addoum et al.| (2020).
However, we find a positive significant coefficient for T'"D-V AR in the energy, utilities, con-
sumer staples, and consumer discretionary sectors. The energy and utility sectors are again
affected by temperature variability, reinforcing our validation exercises. A simple explanation
for the consumer-related sectors is that shopping is difficult during cold spells or heatwaves,
consistent with consumer demand and labor productivity channels (Starr| (2000) and Griffin
et al. (2017))) and documented in Donadelli et al. (2020), Colacito et al.| (2019), |[Pankratz and
Schiller| (2021)), and /Addoum et al.| (2021)). Average monthly anomalies, on the other hand,
are only economically consequential for the utilities sector. The return patterns are robust
when we adjust the sample size to various sub-periods.

We continue to test whether investors are pricing deviations in temperature variability
by implementing a dynamic investing strategy which goes long on firms headquartered in
states that are least affected, and going short on those headquartered in the most-affected
states. We build monthly quintile portfolios by ranking states on their exposure to the
temperature metrics and place Russell 3000 firms in the differentially exposed portfolios
based on their headquarter location. We rebalance the portfolios monthly, depending on
the states’ exposure to a temperature statistic. The methodology retrieves a time series
of portfolio returns which we market-adjust with the Fama-French three factors and an
additional momentum factor akin to Barber and Odean| (2008)). This strategy results in a
50% market-adjusted return over the 14-year sample period when using T'D-V AR, compared
to a negligible 8% (equivalent to 0.05% monthly) for temperature anomalies when considering
all firms. Sectorally, the returns are markedly more for the energy and utilities sectors
and are minor for the consumer sectors when using deviations in temperature variability.
The results remain robust when we remove firms in states that are continually exposed to
temperature shocks. The findings suggest that investors do account for temperature extremes
by dynamically hedging the risks.



The aggregate results point to the fact that T'D-V AR is a salient physical risk for finan-
cial markets; however, the evidence we present is the combined effect of the material impact
on firm operations and investor attention to climate change or temperature. Temperature
shocks have an impact on the attention of investors (Choi et al. (2020)); |Alekseev et al.[ (2021));
Pastor et al| (2021))) and a corporation’s earning processes (Addoum et al. (2021])), which
together affect the equilibrium price of an asset. We attempt to explicitly disentangle the two
effects by first associating the temperature metrics to innovations in attention indices, and
second by extracting the true physical exposure of the firm, divorced from investor attention.

We investigate the attention channel at the U.S. country— and state level after aggre-
gating the temperature metrics to the respective granularity. We adopt the innovations of
The Wall Street Journal (WSJ) news index from [Engle et al. (2020)), which captures media
coverage of climate change tailored to investors. This index only captures investor attention
indirectly, as investors may not necessarily read the news, but we expect that temperature
shocks would alert the media and investors to the negative implications of climate change. Ad-
ditionally, we acquire the innovations of Google Search Volume Index (SVI) data at the state
level for the topics “Climate Change” and “Temperature”. Using this data, we explore whether
retail investors react to localized temperature shocks (Alekseev et al.| (2021)). Our U.S.-level
results show a moderately significant relationship between T'D-V AR and unexpected news
in the WSJ index. Similarly, there is a strongly significant relationship between our metric
and both search topics. The only discernible relationship for temperature anomalies in both
exercises is a positive significant relationship to searches for “Temperature”. Collectively, the
results suggest that shocks to temperature variability act as a “wake-up call” for investors.

The final exercise is to measure the attention-adjusted firm-level impact of temperature
shocks. Due to data constraints and for reasons of simplicity, we assume that a firm’s
operations will be affected in the same state as their headquarters. If a temperature shock
is truly salient to the processes of a firm, analysts will raise the issue of physical risk during
earnings conference calls. We obtain a measure of firm-level exposure to physical risks from
Sautner et al.| (2020)) who capture the pertinent discussion from earnings calls. Their measure,
however, is influenced by attention to climate change as seen by their positive association with
the WSJ index. To disentangle this effect, we obtain residuals from a regression of expected
and unexpected news from the WSJ on their physical exposure series. The residuals, which
we call NetExposure, can be considered the ‘true’ impact of physical risks on a firm. We find
that elevated T'D-V AR is significantly positively associated with an increase in NetExposure
of a firm in comparison with 7'D. Additionally, we find much larger effect sizes for the
utilities and energy sector with our metric. Similar to our prior exercises, we find a muted
effect on consumer sectors. In total, the results contextualize the price reaction by showing
that T'D-V AR is salient for investors and firm operations.

Our primary contribution is to the nascent research on the financial consequences of
temperature. Most work on climate shocks and financial markets defines abnormal tem-
peratures as temperature extremes, i.e. temperatures being above a certain threshold, and
investigates its effects on the international food industry (Hong et al.| (2020))), firm earnings
or profits (Pankratz and Schiller| (2021); |Addoum et al.| (2020)), futures markets (Schlenker
and Taylor| (2021))), or asset prices in general (Bansal et al.| (2017)). |Addoum et al.| (2021])



incorporates the effects of both cold spells and heatwaves on industry earnings. One more
relevant paper is that of |Donadelli et al|(2017) who primarily investigate the effect of tem-
perature volatility on macroeconomic outcomes and also find that shocks diminish U.K. and
European equity prices in the cross-section.

We extend this literature in a number of ways. Our metric describes changes in the
distribution of temperature anomalies, which reflects extremes more comprehensively than
thresholds do. We document that deviations in temperature variability can represent extreme
temperatures in a way that is salient for both weather futures and stock markets. While Ad-
doum et al. (2021)) focus on earnings, our results are in line with their findings that markets
react both to extremely hot and extremely cold days. Furthermore, we find that day-to-day
swings in temperature are similarly consequential for the same markets. Our study also ex-
pands the equity pricing tests of anomalies in temperature volatility of Donadelli et al.| (2017))
in concrete manners: (1) by directly validating the importance of deviations in temperature
variability in the energy consumption and weather futures market; (2) performing an asset
pricing factor analysis to examine the relationship between deviations in temperature vari-
ability and U.S. stock returns; and (3) developing a long—short strategy to explore investor
reactions to sub-national heterogeneity in temperature in the U.S. equity market.

Another contribution is to the body of research that studies the impact of temperature
extremes on investor reactions and attention. Engle et al. (2020) builds the WSJ climate
news series to hedge against long-term climate risks. |Choi et al. (2020) finds that local tem-
perature shocks can heighten investors’ attention, which in turn differentially affects returns
on a cross-section of stocks. |Alekseev et al| (2021), with a similar argument, investigates
the effects of local temperature shocks, finding that mutual funds respond by shifting their
portfolio allocation, irrespective to the intensity of the heat shocks. We complement the ma-
jority of these findings, similarly concluding that investors do react to temperature swings.
Specifically, deviations in temperature variability lead either to direct attention to a local
shock, as in |Choi et al.| (2020) and Alekseev et al.| (2021]), or to indirect investor attention to
increased news coverage distributed more broadly. Critically, however, we discover that the
pricing reaction only occurs in response to a specific type of temperature shock. Furthermore,
we go a step further by disentangling attention from firm-level exposure to the risk.

This paper is organized as follows. Section [2]describes the data and explains our data set
construction procedure. Section |3|describes how we expand upon prior temperature statistics
and derive T D-V AR, the deviation in temperature variability. This section also illustrates
that T'D-V AR comprehensively quantifies the extremes in the distribution of temperature.
Section [] validates T'D-V AR using electricity consumption and weather derivatives. The
investigation into the relationships between T'D-V AR and the U.S. equity market follows in
Section [o] Section [6] disentangles the effect of TD-V AR on investors’ attention and isolates
its direct impact on firms. Section [7] concludes.

2 Data

In this work, we consider data from a variety of sources. We start with geospatial temperature
data that have a temporal characteristic. We link the spatial feature to financial variables



by extrapolating their location. Finally, attention indexes are aggregated at national and
sub-national levels.

2.1 Temperature data

Our analysis is based on the conjecture that deviations in temperature variability are more
likely to affect the profitability of the U.S. corporate sector than are changes in mean tem-
perature. The effects associated with deviations in temperature variability are likely to vary
substantially across time and location.

We collect data to test the relationship between deviations in temperature variability
and weather derivatives. In particular, we obtain city-level temperature data for 13 U.S.
citied] using the U.S. National Oceanic and Atmosphere Administration (NOAA) repository.
Specifically, we use the NOAA Global Historical Climatology Network daily (GHNCd), an
integrated database of climate summaries from land surface stations across the globe. For
each city, we select the station corresponding to the closest city airport and retrieve the daily
maximum temperature from the GHNCdA | The temperature data cover the period from 1
January 1950 to 31 December 2021. We pre-process the data by filling in missing values
with the average of the maximum temperature recorded on the days either side. Table
reports the cities in our data set, the GHNCd code, the mean daily temperature, and the
corresponding standard deviation.

The majority of our empirical analysis requires a spatially uniform, rather than city-
specific, estimate of temperature. To measure location-specific exposure, we obtain spatially
homogeneous daily temperature from the BEST database| The BEST data are in the form of
gridded 1-degree latitude by 1-degree longitude reconstruction of daily temperatures. BEST
spatial interpolation provides extensive spatial coverage from 1950 to the present. BEST
utilizes data from significantly more land stations (over 40,000) than the 10,000 used by
alternative data sets, improving the assessment of record-setting daily U.S. temperatures.
The data is then used to compute state-level and U.S.-wide daily temperatures, the details
of which are presented in Section and Appendix [A.T]

2.2 Financial and economics data

We collect data on returns for the Russell 3000, an index tracking the performance of the 3,000
largest U.S. companies, representing approximately 97% of the investable U.S. equity market.

!These are: Atlanta, ATL; Boston, BOS; Baltimore Washington, BWI; Chicago, ORD; Cincinnati, CVG;
Dallas Fort Worth, DFW; Des Moines, DSM; Detroit, DTW; Las Vegas, LAS; Minneapolis St Paul, MSP;
New York, LGA; Portland, PDX; Philadelphia, PHL; Salt Lake City, SLC, and Tucson, TUS. This same data
was used in [Diebold and Rudebusch| (2019)).

2Later in the analysis, we consider temperature-related weather derivative instruments. These contracts
are city-specific and are settled based on the temperature readings of a specific weather station near the
contract city.

3The application of homogenization techniques to daily temperature data is important in order to accu-
rately understand the evolution of temperature extremes over the past century. The BEST daily temperature
data use of a novel homogenized gridded approach to improve the assessment of record-setting daily U.S.
temperatures. We refer to Rohde et al|(2013) and [Rohde and Hausfather| (2020) for a technical discussion.



Data on Russell 3000 constituents, their firm fundamentals and headquarter locations are
drawn from Refinitiv, and they are classified into their respective sectors using the Global
Industry Classification Standard (GICS).

In Table [2| we report summary statistics on stock returns and several control variables
used in our subsequent tests. The dependent variable, r;;,, in our cross-sectional return
regressions is the monthly return of an individual firm ¢ in month ¢, headquartered in state s.
We use the following control variables in our cross-sectional regressions: LOGSIZE; ,, given
by the natural logarithm of firm i’s market capitalization (price times shares outstanding) at
the end of each quarter ¢; B/M,,, which is firm i’s book value divided by its yearly market
cap; ROE;;, which is given by the ratio of firm 7’s net yearly income divided by the value of its
equity; LEV FRAGE, which is the ratio of debt to book value of assets; capital expenditures
INVEST/A, measured as the firm’s yearly capital expenditures divided by the book value
of its assets; LOGPPFE, which is given by the natural logarithm of the firm’s property, plant,
and equipment at the end of year t; M OM,,, which in turn is given by the average of returns
on stock ¢, for the 12 months up to and including month ¢ — 1.

To assess portfolio exposure to the classical three Fama-French factors, we download the
factors from Kenneth French’s data repository (French| (2020)) for the U.S. equity market.
These factors are related to the Russell data set we employ for the financial analysis. Table
provides summary statistics on the three factoif| characteristics: market return minus risk-free
rate (Mkt-RF), small minus big (SMB) and high minus low (HML).

We collect data covering September 1990 to December 2020 on electricity consumption and
weather futures prices to validate the materiality of our metric. We obtain time-series data on
energy demand for 50 U.S. states at the monthly frequency from the U.S. Energy Information
Administration. The U.S. classification considers four end-use sectors: residential (homes and
apartments), commercial (offices, malls, stores, schools, hospitals, hotels, warehouses, and
public assembly), industrial (facilities and equipment used for manufacturing, agriculture,
mining, and construction), and transport.

Weather futures contracts are traded on the CME, and a majority of weather contracts
are based on temperature. Temperature-related contracts insure the buyers against either
excessive heat or excessive cold during a specified period of time. The two main tempera-
ture instruments are Heating Degree Day (HDD) contracts and Cooling Degree Day (CDD)
contracts. The buyer of an HDD contract receives payments for cold days, defined as days
with average temperature below 65°F; conversely, the buyer of a CDD contract receives pay-
ments for hot days, defined as days with average temperature exceeding 65°F. Contracts
are available for eight geographically distributed cities across the U.S. These contracts are
written on the observed temperature at a specific weather station near the contract city for
a specific period. We select the same cities considered in |Diebold and Rudebusch| (2019) and
Schlenker and Taylor| (2021): Atlanta, ATL; Chicago, ORD; Cincinnati, CVG; Dallas Fort
Worth, DFW; Las Vegas, LAS; Minneapolis St Paul, MSP; New York, LGA; and Portland,
PDX | Daily futures prices (end of day) for HDD and CDD contracts were obtained from
Bloomberg, covering 2005 to 2020.

4For a comprehensive description, refer to Fama and French! (1993)
5Table [1| indicates which of the cities in our larger city sample have temperature derivatives available.
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2.3 News and attention index

Concerning news indices, we employ data from several sources. From Google Trends we
retrieve the Google Search Volume Index (SVI) from 2004 for a particular topic at the U.S.
country and sub-national levelﬂ The retrieved monthly index, G, represents the intensity
of the topic search, on a scale from 0 and 100, in a certain region, s, from 2004 to the
present. For each state, 0 represents a month with no searches on the topic whereas 100 is
the month with the most searches in its history. Two states may peak at the same time;
however,because the scale only compares time periods within a state, two states may have
the same index value at the same time, without having the same actual search volumes. We
download the Google SVI for the 50 states based on "climate change" and "temperature"
search terms. Figure shows the difference between the indices averaged at the U.S. level.
We note that searches for "temperature" display a clear seasonal pattern, which we de-trend
using the methodology outlined in (Choi et al.| (2020)).

We also use the WSJ news index created by [Engle et al. (2020), which captures both
physical and transition risks. The series they build is based on the assumption that any
news about climate change is bad news. The news index is broken down by month, covering
July 2008 through June 2017. When using this index, our sample is truncated to reflect this
shortened time period.

2.4 Other data

In order to aggregate the state temperature index at the country level, we employ a population
and gross domestic product (GDP) weighting method. We obtain the population and GDP
series from the Federal Reserve Economic Database released by the Federal Reserve Bank of
St. Louis. Population is available at the state level through the code '"POP’, with a starting
date of 1950. To match the monthly temperature and financial data sets, we interpolate the
yearly frequency of the population data to obtain monthly or daily series. GDP is available
through the code 'RQGSP’, which returns quarterly real gross product for each state. We
perform a similar interpolation method to obtain a monthly or daily series.

We examine firm-level exposure to temperatures by adopting data developed by |Sautner
et al.| (2020). Their physical exposure measure consists of the proportion of time an earnings
conference call centers around physical climate shocks. The data is available at a quarterly
frequency and runs from 2000 to 2020. When using this measure, we average our temperature
and attention data to the quarterly frequency.

3 On the evolution of excess temperature dynamics

Our aim is to represent the spatio-temporal variation in the distribution of temperature
anomalies and, in particular, extreme temperatures, in a way which is more salient for fi-
nancial markets. To do so, we expand upon prior temperature statistics to incorporate a

5Google makes the Search Volume Index (SVI) of search terms public via the product Google Trends
(www.google.com/trends). Weekly SVI for a search term is the number of searches for that term scaled by
its time-series average.
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more complete representation of abnormal temperatures by gradually building a statistic of
temperature variability, named T'D-V AR,. With concrete and theoretical examples, we il-
lustrate why our statistic is comprehensive in quantifying the extremes in the distribution
of temperature. We end the section by describing our aggregation methodology used for our
empirical analysis.

3.1 TD-VAR derivation

In the spirit of Donadelli et al.| (2019) and [Kotz et al.| (2021)), for a given location, we compute
the variability in temperature deviation and subtract this value from its historical mean. This
metric effectively captures changes in temperature extremes by means of shifts in temperature
variability across time. It has been shown that a high degree of variability in temperature
anomalies tends to be associated with more frequent extreme temperature events (Hansen
et al.| (2012))). Considering that the literature confirms that abnormal temperature anomalies
cause economic and financial disruptions, we argue that deviations in temperature variability
are a primary driver of market reactions, and this statistic improves upon alternative statistics
used in the recent literature, such as changes in mean temperature and abnormal or extreme
temperatures (Addoum et al.| (2020), |Addoum et al.| (2021), |Pankratz and Schiller| (2021))).

To that end, we construct a set of location-specific temperature statistics. First, similar
to |[Kotz et al.| (2021]), we define the daily change in mean temperature as:

TDs,d = (Ts,d - Ts,d>7 (1)

where T} 4 indicates the mazimum temperature observed in location s on a certain day d in
the year; and Ts,d represents the historical average temperature in the same location s and
on the same day d over the period 1960-2005. A smoothing window of 5 days is used to
calculate the historical average daily temperature. -

Then, we define the monthly temperature anomaly, T' D ,,, as the average of the temper-
ature anomalies relative to the daily mean temperature within a given month. Analytically,
this corresponds to:

D
_ 1 m
TD, = o ; TD,q, (2)

where D,, is the number of days within month m.
Next, we calculate the monthly standard deviation in temperature anomalies in month
m:

D
> T2,
d=1 7

Lastly, we calculate the deviation in temperature variability from its historical mean
and obtain the deviation in temperature variability:

TD—VAR&m = 0'<TD57m) - E(TDs,m)a (4)



where (1" D; ,,,) represents the historical average temperature variability recorded in location
s at month m[] This second term distinguishes us from Donadelli et al| (2019), as their
measure captures the dispersion of temperature variability against a historical level observed
over the industrial revolution era, i.e. 1659-1759.

We emphasize that T D-V AR can assume both negative and positive values. A negative
value of T'D-V AR corresponds to a tighter distribution of temperature anomalies compared
to historical realizations. Consequently, the likelihood of a large anomaly decreases. A
positive value of T'D-V AR corresponds to wider variability of temperature anomalies and,
by construction, an increase in the unconditional probability of large swings. A positive
TD-V AR can be the result of two distinct and non-concomitant patterns. First, where the
temperature deviates strongly in one direction during elongated cold spells or heatwaves.
Second, when day-to-day temperatures swing frequently between hotter— or colder-than-
normal periods. In the next sections we describe where we observe these patterns in the data.
Crucially, statistics that rely on shifts in mean temperature, T'D, and abnormal temperature
are insufficient for describing changes in the unconditional probability of temperature.

3.2 Intuition on TD-VAR

Now that we have formally derived T'D-V AR, we illustrate its ability to describe temperature
extremes more comprehensively in comparison to using thresholds. Also, we discuss its
advantages and various properties in the context of prior literature. Schlenker and Taylor
(2021)) and |Addoum et al.| (2020) use a form of T'D by defining extreme temperatures as the
number of days in a month where the temperature exceeds a given heat threshold. However,
both heatwaves and cold spells can cause severe issues. For example, in early 2021, a winter
storm hit Texas causing power cuts and, as lamented by the Financial Times, provoking
disruptions to the global supply chain for chemical raw materialsﬁ Addoum et al.| (2021)
correct this by accounting for both warmer and cooler temperatures, yet still use a form of
a priori thresholding. When calculating temperature anomalies, thresholds are likely to vary
substantially across time and location. T'D-V AR presents the most salient spatio-temporal
information, providing a sufficient characterization of the distribution of temperature and
concisely describing temperature extremes.

The primary benefit of using our metric versus other temperature measures such as 7'D,
is its ability to capture temperature extremes without introducing idiosyncratic thresholds.
Building on the literature that confirms the relationship between temperature anomalies and
economic and financial disruptions, we claim that our measure T'D-V AR improves upon 17D
in representing noticeable characteristics of temperature anomalies and their economic and
financial impacts. We show, through a set of exercises, the relative importance of T'D-VAR
over T'D in representing extremes in the temperature distribution.

Tt is possible to compute an equivalent daily 7 D-V AR over a rolling window [. First, we compute the
standard deviation in temperature anomalies in location s at day d observed over the past I days: o(T'D)s 4, =

1
71 / Zi:l T Dg’ d—;- Then, we compute the (T Dy q;), the historical average temperature variability recorded

in location s at day d with lag {. We then obtain the daily TD-V AR defined as TD-VAR; 4, = 0(T'Ds.q,) —
E(TDS_’dyl)

8The Financial Times, March 24th, 2021 - "Global supply chains face months of disruption from Texas
storm"
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We begin with a real-world example of occurrences of extreme temperatures and the
average value of monthly temperature anomalies, TD. Figure |2 represents the temperature
conditions in Boston during the year 2020. The red bars represent the number of days that
Boston experienced an ‘extreme’ temperature — defined as a temperature that exceeds 1.5
times the historical standard deviation. The blue line is the average monthly temperature
anomaly, T'D. In January, the average temperature anomaly is substantial, but the frequency
of extremes is low. The average temperature anomaly over December and April is modest
but there is a high number of extreme days. In aggregate, the results show that a measure
based on average anomalies does not adequately reflect the frequency with which a location
experiences extreme temperatures.

We now turn to a theoretical example to illustrate why thresholds fail to represent
temperature extremes. We consider a continuous response variable x characterized by a
probability density function ¢(z). The probability of experiencing an extreme value, Xrp is
computed using the area above or below the thresholds k,,., and k,,;,, which represent the
values associated with the definition of an extreme.ﬂ Analytically, X7p can be expressed as:

kmin

Xep= [ wladat [ vtyie (5)
where () is the probability density function of T'D.

The two components we define, TD and TD-V AR, characterize shifts in the distribu-
tion parameters of 7'D. In the absence of climate change, T'D is equal to 0, as is T'D-V AR.
Changes in T'D represent the differences in the average realization of the temperature distri-
bution; however, a positive T'D does not imply an increase in the occurrence of extremes. In
contrast, changes to T'D-V AR modify the entire shape of the distribution of T'D, explicitly
increasing the variability and the probability of extreme temperatures.

Simply put, changes in T'D characterize shifts in the mean of T'D while T'D-V AR accounts
for a change in the variance of T'D.

To continue our theoretical example, we present conceptual arbitrary thresholds typi-
cally used to represent temperature extremes. We assume that T'D exhibits a normal distri-
bution characterized by the parameters p, which is set to zero, and o2 is set to the historical
unconditional variance of T'DJ% Further, 52 is fixed to 25 which is in line with the uncon-
ditional historical temperature data. Finally, we set k,,,, to 10°F and k,,;, to -10°F. In this
baseline scenario, the amount of time a location experiences an "extreme" temperature is
4.6%, or 1 day in a month.

As there is no closed formula to formally calculate the amount of time spent above or
below each threshold, we present a simulation that describes the interactions between the
values of T'D and T'D-V AR.

Figure shows the extreme probability, represented by the red shaded area for differing
values of TD-V AR and TD. The central reference graph represents the historical distribution
of temperature anomalies characterized by mean zero and the historical average volatility
level. The historical average volatility level also implies that T'D-V AR is zero. Moving

9This definition of temperature extremes is closely related to|[Pankratz and Schiller| (2021),(Addoum et al.
(2020), and |Addoum et al.| (2021]).
U equal to zero is a case where there is no global warming.
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horizontally or vertically from the central plot represents nominal changes in TD and TD-
V AR, respectively. The right column, where the temperature anomaly has a positive value,
is associated with an increase in the occurrence of extremes only when T'D-V AR is non-
negative. In contrast, positive values of T'D-V AR — in the first row — are always associated
with a larger shaded area, even in the case of negative values of T'D. These instances illustrate
the drawbacks of solely using T'D rather than T'D-V AR. In sum, using only the average of
T'D fails to consider potentially salient temperature realizations which T'D-V AR can better
capture.

In the prior examples, we assumed T'D-V AR and TD to be independent when assessing
T D-V AR’s relative importance from various theoretical perspectives. Here, we demonstrate
how T'D-V AR correlates with other temperature measures. Table |4 shows the long-term
relationship of T'D-V AR with other temperature factors, such as levels, deviation and vari-
ability. As already presented, there is no linear relationship between temperature anomalies
and temperature levels. Deviation variability, however, shows a negative correlation coef-
ficient of -0.8 due to the fact that variability is higher in winter and lower in summer, a
fact well documented in the literature. When we turn our attention to T'D-V AR, we note
the negligible positive relationship with these other variables. We highlight that T'D-V AR
does not display a seasonal pattern as the variability, and the relationship with variability, is
absent.

Fundamentally, our examples highlight that temperature extremes can be better char-
acterized using deviations in temperature variability. A key aspect of this argument is that
it obviates the need for thresholds. We extend our theoretical explanation of the advantage
of TD-V AR over T'D with realistic examples in the following sections.

3.3 City-level evidence

In this section, we supplement the prior theoretical examples with real-world, city-level
records of T D-VAR and T D. We compute each value for 13 U.S. cities to further demon-
strate the key differences between the two measures, analogous to [Diebold and Rudebusch
(2019). We select periods of time in these cities to graphically represent the temperature and
temporal dynamics of its derivations. Furthermore, we highlight important differences after
aggregating temperature data to the state level.

We obtain daily maximum temperature data from NOAA as our basis for our various
offshoot measures. This data, from 1950 onward, are recorded at the airport stations of the 13
cities.[l;r] From the daily maximum level, we extract temperature, T, temperature anomalies,
TD, temperature variability, o(7'D), and deviation in temperature variability, 7D — VAR.
The former two metrics are defined at a daily frequency while the latter two are computed
on a 30-day rolling window. Figure [4| displays the plots of these four statistics for the city of
Atlanta between 2016 and 2018. Unsurprisingly, temperature 7' is characterized by seasonal
changes, as illustrated in the top left diagram.

The random variable T'D, shown in the top right panel, is generated after adjusting tem-

HThese temperature stations are the same as those used to compute the value of the temperature derivative
contracts in Section
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perature for seasonality[””] This component exhibits a slow-moving long-term trend, shown
in red, which represents the average warming due to carbon emissions. During the winter
months, temperature anomalies are highly volatile compared to the summer months. The
seasonality of T'D volatility is made clear in the bottom left plot by calculating o (7' D) using
Equation [3] Lastly, deviations in temperature variability are derived in the bottom right di-
agram after removing the long-term seasonality /variability component. T'D-V AR improves
upon T'D by removing the sluggish rise in temperatures and the seasonality component.

To further contextualize the plots in Figure [d, we explore the difference between 7'D-
VAR and T'D by highlighting one particular city location: Boston. We perform a rolling
computation of TD — VAR and T'D at the daily level for a time window of 2015 through
2018, shown in Figure[5] The top and bottom panels of the figure contain the realizations of
TD and T'D-V AR, respectively. We exemplify a few moments in time to more realistically
describe a link between T'D and T'D — V AR. There are three particular peaks in TD —V AR
for the city of Boston: June-July 2015, February—April 2016, March—April 2017. For the
first peak, we note that T'D is persistently high, portraying a heatwave, in comparison with
the historical average — shown in red — during these months. The second peak of TD-V AR is
related to large swings of temperature anomalies in both directions. The final high variability
temperature event, beginning in March 2017, exhibits both persistently higher deviations and
fluctuations around the historical average value. Combined, these instances show no direct
link between the two measures at the daily level, which is corroborated by Table 4] as the
correlation coefficient between T'D — VAR and T'D is 0.12. To clarify the true disconnect
between the two measures, we aggregate the values to the state level.

Figure[6] highlights the differences between the two temperature measures after deriving
the monthly 7D — VAR and TD - Equatlon — for the state of Texas. In the right panel
of Flgure@ we plot monthly anomalies relatlve to historical temperatures, TD whereas the
left panel illustrates the monthly deviation in temperature variability, T'D- VA}/%\./ In May
through June of 2018, there are high values of TD — VAR in comparison to T'D, which
is reversed in the months between October and December of 2019. This selected example
illustrates that higher levels of T'D are not tied to higher levels of TD-V AR, as the two
metrics capture different aspects of the temperature distribution.

3.4 State and country aggregation

For our empirical analysis in the next sections, we use aggregated measures of TD-VAR
and T'D to represent the spatio-temporal heterogeneity of temperature. Our underlying
assumption is that firms and investors react to temperature shocks which are inherently
local. We first aggregate gridded temperature anomalies to the state level because there is
prior evidence that investors react to local weather shocks (Choi et al.| (2020)). Additionally,
due to data constraints and for reasons of simplicity, we assume that a firm’s operational
footprint is primarily located in the same state as its headquarters. To match country-level
indices for our empirical analysis, we also combine the state-level aggregations.

12Here, TD is comparable to measures in [Pankratz and Schiller| (2021)), |Addoum et al. (2020), and
Schlenker and Taylor| (2021). A caveat is that |Pankratz and Schiller| (2021) and |Addoum et al.| (2020)
only use heatwaves.
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We begin by computing state-aggregated temperature. We collect grid-level data from
the BEST, which assigns a temperature field at a 1-degree resolution within U.S. land borders.
The aggregation method can be formally defined by the temperature T of state s on day d
as follows:

N,
Toa =Y w;xTya, (6)
i=1
where T5 4 is a weighted average of the temperature assigned to each grid cell ¢ = 1,..., Ny,

and Ny is the number of parcel grids cells. We equally weight the cells by setting the weights w;
equal to 1/ Ny, which allows for a consistent measurement of average maximum temperatures
at the state level. This methodology allows us to derive TD and TD-V AR of state s as
described in expressions , , and . Our process of obtaining sub-national temperature
data is similar to other papers such as |Burke and Tanutama (2019). In Appendix we
discuss alternative aggregation methods.

To derive U.S.-wide temperature factors, we aggregate each temperate volatility mea-
sure from its state counterpart. Aggregating data to the country level subsumes the rich

sub-national heterogeneity of temperature data but allows us to match it to other country
indices and data sources. We strictly define U.S.-wide T'D and T'D-V AR as follows:

Ns
USpm =Y wiTDim, (7)
=1
Ns
USrp—varm = Y wTD-VAR;,. (8)

i=1
While there are multiple ways to aggregate temperature data, we consider each state to be its
own grid cellf—j The measure for each state is then equally weighted by setting w; = 1/50. In
Appendix we discuss possible alternatives, such as weighting for the resident population
or the GDP of a specific state.

4 Validation using electricity consumption and weather
derivatives

Our prior examples reveal that the T'D-V AR measure compares favorably to T'D in cap-
turing the incidence of temperature extremes. Next, we test the salience and validity of
our measure, T'D-V AR, by investigating whether deviations in temperature variability are a
relevant driver of energy consumption and prices in the weather derivatives market. This fol-
lows prior research by |Campbell and Diebold| (2005), who document that unexpected weather
fluctuations can cause substantial pricing effects on the weather derivatives market and its
players, such as energy producers and consumers. Given that T'D-V AR captures extreme
fluctuations in temperature, we expect T'D-V AR to perform better than T'D at accounting
for variations in energy consumption and weather derivative prices.

BExpressions and in Appendix describe alternative methods.
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We begin by examining the effect of TD and TD-V AR for energy consumption. We
obtain time-series data on energy demand at the monthly frequency from the U.S. Energy
Information Administration for all states. Energy consumption is classified by sector: resi-
dential, commercial, industry and transportation. Since energy consumption displays strong
seasonal patterns, our analysis focuses on modeling short-run temperature shocks not cap-
tured by long-term trend analysis (Son and Kim (2017))). We link the observed seasonality
of monthly demand (Bigerna (2018))) to the two components of temperature: anomalies and
deviation in variability. We first run an ARMA (J,P) for each state s following Bigerna
(2018):

J P
Qot = Y a;Quj + Y byerp+cus (9)
=1 p=1

where (), + represents the electricity consumption in state s at time ¢, J is the autoregression
order and P is the moving average order. We then check the significance on the residual
against TD-V AR and T D respectively, and estimate a fixed effects model:

¢ = By * TD-VAR+ By % TD + v + 1 + €. (10)

Table @ shows the resulting coefficients. We observe a positive and statistically signif-
icant [ coefficient for the deviation in temperature variability, T'"D-V AR, in residential and
industrial sectors and in the aggregate. A positive coefficient implies that, in a month char-
acterized by high variability, the forecast value of electricity consumption exhibits a larger
error relative to the best-fit value estimated through Equation @D This error is inherently
determined by the extent of the variability. The non-significant coefficient for TD-V AR in
the commercial sector suggests that the elasticity of electricity consumption is different for
the residential and commercial sectors. This conclusion is supported by |Zachariadis and
Pashourtidou| (2007)) who find that the residential sector is highly reactive to weather condi-
tions, as demand in the short term is inelastic to price. Taken together, our results confirm
prior evidence of energy consumption being highly affected by weather conditions (Quayle
and Diaz (1980))) and sensitive to large shifts in temperature variation. (Chang et al.| (2016)).

The relevant impact of weather on electricity demand has facilitated the creation of a
market for weather derivatives. This market enables utility firms to hedge volumetric risk by
trading the underlying risk driver — temperature — rather than the price of electricity (Jewson
and Brix (2005)). We further validate our temperature measures by testing their association
with city-level temperature derivatives prices.

We hypothesize that, if traders account for deviations in temperature volatility, 7' D-
V AR should capture more variation in weather derivatives prices than T'D. To verify that our
measure is relevant for weather derivative markets, akin to |Diebold and Rudebusch| (2019)),
we analyze futures contracts offered by the CME. The key benefit of this approach is that
Schlenker and Taylor (2021) find that market participants accurately incorporate temperature
anomalies through climate model projections. We extend this line of thought to confirm
whether T'D-V AR is a driver of these contract prices. The first contract follows HDDs,
which reflects the amount of heating required during cold days in winter. The second tracks
CDDs that measure the necessary cooling required during hot days in summer. Therefore,
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CDDs have effective values in summer and HDDs in winter. We strictly define CDDs and
HDDs where T} is set at 65°F for a contract traded at the CME:

CDD;y =Y (Ty — Ty, 0)*

(11)
HDD; = 0 (Ty — Ty, 0)7

We use ordinal least square (OLS) regression analysis to investigate whether monthly
average prices for CDDs and HDDs are affected by temperature — measured as temperature
deviation and deviation in temperature variability. We estimate CDDs and HDDs separately
with the following equations{"]

ODDs,m = ﬁtTm + Bef\_D/t + ﬁvTD_VAR + BUU(TD) + Ym + Ns + €

__ 12
HDD;,, = a+ BTy, + BT Dy + B, TD-VAR + B,o(TD) + v, + 1s + €, (12
where T, is the average daily temperature level minus 65°F degrees and ?13, o(TD), and
TD-V AR are defined in Section (3.1]). For month and state fixed effects, we include 7, and
s, respectively. We only consider the constant term in winter given that the contract is
not written on the maximum temperature of 65°F. We split the contract data into winter
(October to March, inclusive) and summer months (April to September, inclusive).

Table 5| shows the results for the two contracts using various temperature drivers. The
first column of each panel includes the underlying temperature on which the contract is
written, while the second column includes the other volatility measures. We show that 7,
alone is able to explain 90% of monthly average price variance for CDDs in summer and
95% for HDDs in winter. An increase in temperature results in a decline in the price of
CDDs, and vice versa for HDDs. Unsurprisingly, the magnitude of the coefficients is similar
and of opposite sign, given that the derivative is dependent on the deviation from the 65°F
threshold. -

We then consider the remaining statistics: TD-VAR, T D, and o(TD). We document
that historical variability, o(T'D), has a large significant coefficient during the winter but
no effect in summer. The result supports the findings in prior literature that temperature
volatility is greater during these months["”| The coefficients for TD-V AR are comparable
across winter and summer, which is intuitive when recalling the option price effect of the
volatility on the underlying asset. Higher deviations in temperature variability from the
historical mean increase the probability of experiencing extreme temperatures and, conse-
quently, increase the probability of exercising the option, thereby increasing the value of the
weather derivative contract. This indicates that two cities with comparable average temper-
atures may face diverging weather derivatives prices when one city is characterized by higher
temperature variability. Finally, we compare the coefficients of T'D which have signs in the
opposite direction to T},. This suggests that traders assume temperatures will revert back to
their historical levels when a city experiences higher temperature deviations. Collectively, we

14We use the derivatives defined in Section and only consider the seven cities for which the derivatives
are still traded.

I5Examining the seasonal component of temperature volatility, Campbell and Diebold| (2005 and [Benth!
and Benth (2007) document the higher values of temperature volatility during winter times.
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find that traders react negatively to increasing T'D-V AR by establishing a higher price for
the apparent risk, whereas an increase in T'D implies a reversion to the mean for the market.

Our validation exercises strongly suggest that shifts in temperature variability, T D-
VAR, are primary drivers of electricity consumption and the weather futures market. The
results are consistent with Diebold and Rudebusch (2019) in demonstrating that refined
measurements of temperature extremes can be consequential for financial asset prices. This
confirmatory evidence also suggests that we are better able to characterize the reactions of
market participants using deviations in temperature variability than by referring to temper-
ature deviations alone. We continue this line of reasoning by asking whether this market
response to T'D-V AR has further implications for the stock market.
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5 Empirical analysis

5.1 Estimating temperature exposure

We analyze the effect of temperature deviation TD and deviations in temperature variability
TD-VAR on firm stock prices. Specifically, we are interested in examining whether the
differential exposure of firms to deviations in temperature and temperature variability affect
their stock price. Our expectation is that T'D-V AR will be associated with a collective
reaction from investors as well as material shocks to a firm’s performance, resulting in an
aggregate decline in a firm’s stock price. To empirically test this we use the Russell 3000,
a broad index covering 3,000 major U.S. firms, and collect data on firm stock returns and
headquarter locations. This framework benefits from the panel data characteristics of our
sample, which is rich in both the cross-section and time-series dimensions. Moreover, it is
possible to investigate the temperature dynamics at the industry level and include time— and
firm fixed effects. We do not employ geography fixed effects since geographical differences
are captured by the state-level temperature.

Table ([2)) in Section 2 provides summary statistics on stock returns and several control
variables used in our analysis. The dependent variable, 7; s, in our cross-sectional return re-
gressions is the monthly return of an individual firm ¢ in month ¢ and headquartered in state
s. We use the following control variables in our cross-sectional regressions: LOGSIZE;,,
given by the natural logarithm of firm i’s market capitalization (price times shares outstand-
ing) at the end of each quarter ¢; B/M,;, which is firm ¢’s book value divided by its yearly
market cap; ROE;,, which is given by the ratio of firm i’s net yearly income divided by the
value of its equity; LEV ERAGFE, which is the ratio of debt to book value of assets; capital
expenditures INV EST /A, measured as the firm’s yearly capital expenditures divided by the
book value of its assets; LOGPPE, which is given by the natural logarithm of the firm’s
property, plant, and equipment at the end of year t; MOM,;, which in turn is given by the
average of returns on stock ¢, for the 12 months up to and including month ¢ — 1. To allow
for systematic differences in correlations across firms and over time, we include firms fixed
effects n; and year—month fixed effects ¢,. In this regard, our identification comes from states’
variation in a given month.

In turn, we consider the effect of abnormal temperature, measured as the average
daily temperature deviation within a month (7'D), and the effect of abnormal temperature
variability, measured as the deviation in temperature variability from its historical mean in
the same month (T'D-V AR). This regression captures the impact of temperature on stock
returns at the state level. Taking both abnormal temperature and abnormal temperature
variability into account, we believe this measure provides a rough proxy for the climate
change risk that a firm is exposed to at a given point in time.

Specifically, we estimate the following model:

Tits =+ P x Ty o+ [1Ci 1 + Q¢ + 1 + €54 (13)

where r;; s measures the stock return of firm 7 in month ¢ and headquartered in state
s. T is a generic term that can stand in for either the deviation of daily temperature from
its historical mean within a month (7'D), or the deviation of daily temperature variability
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from its historical mean in the same month (7'D-V AR). The vector of firm-level controls C
includes the firm-specific variables described earlier. We estimate these two cross-sectional
regressions using panel OLS. In both model specifications, we cluster standard errors at the
firm and year levels, which allows us to account for any serial correlation in the residuals and
to capture the fact that some control variables are measured at an annual frequency.

We begin our analysis by asking whether temperature exposure affects the stock returns
of Russell 3000 firms. Table [7] presents distinct estimates of the effect of abnormal tempera-
ture, Panel A, and abnormal temperature variability, Panel B. Specifically, once we control
for firm and time period, as well as a battery of firm characteristics, the estimated effect of
temperature deviation T'D is economically small and statistically insignificant when consid-
ering all firms (first column of Panel A). Nor do we find evidence of a significant relationship
between an average firm’s exposure to deviations in temperature variability, TD-V AR, and
its stock returns (first column of Panel B).

Our empirical tests thus far indicate that exposure to temperature deviation and devi-
ations in temperature variability has a minimal effect on stock returns for the average firm in
the Russell 3000. To this point, our findings substantiate the results of Addoum et al.| (2020)),
who document that temperature exposure is not an important driver of establishment-level
sales growth. These findings are consistent with those of Dell et al.| (2012), who show that
the negative effects of temperature on aggregate economic growth are concentrated among
developing countries, but tenuous in richer economies.

While there is some evidence that extreme temperatures have no effect (Addoum et al.
(2020))), certain sectors of the economy may still exhibit sensitivity to abnormal temperatures.
As such, we continue our analysis to examine whether firms in certain economic sectors are
particularly sensitive. We use GICS codes to organize Russell 3000 firms into 10 sectors.
In Table [7] Panel A, we rerun our yearly stock return regression for each sector. For all
sectors except utilities (electric utilities; gas utilities; and multi-utilities), we continue to find
economically and statistically insignificant estimates associated with exposure to temperature
deviations. Months that are warmer or colder than expected are equally good and bad for all
these industries. Utilities are a special case though, because they are tasked with providing
enough energy over time as well as meeting instantaneous electricity demand, while juggling
the costs associated with grid balancing and a continuous expansion of non-dispatchable
renewable generation. As such, deviations in average daily temperature require utilities to
invest more in emergency measures, such as increasing capacity and expanding demand-—
response investments to mitigate the effects of unexpected changes in daily temperatures.
Accordingly, our analysis reflects that the effect of abnormal temperatures on utilities is
economically important. The estimate indicates that deviations of the daily temperature
from the historical mean are associated with a 10.04 percentage-point decrease in utilities’
stock returns, and that this effect is statistically significant.

In Panel B, we examine the effect of changes in the distribution of temperature by
considering a deviation of daily temperature variability from its historical mean in a given
month. As will become clear later, isolating the effect of changes in temperature distribution
is decisive for understanding the temperature—stock relationship, and for qualifying some of
the findings in previous studies that explicitly consider temperature extremes. Crucially,
and in contrast to our estimates for the deviations in (average) temperature, we find that
deviations in temperature variability significantly affect energy (oil, gas and consumable fuels;
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energy equipment), utilities, consumer staples (beverages, food products and tobacco; food
and staples retailing; household and personal products) and consumer discretionary services
(leisure products; textiles, apparel and luxury goods; hotels and restaurants; beverages;
automobiles; and specialty retail).

Several channels may be at work to explain the negative impact of deviations in temper-
ature variability on temperature-sensitive industries (Graff Zivin and Neidell (2014)), Addoum
et al|(2020), Addoum et al.| (2021)) [ Our findings are consistent with the consumer demand
and labor productivity channels ( [Starr| (2000); |Graff Zivin and Neidell (2014)). Recall that
TD-V AR offers a general characterization of the unconditional probability of temperature
extremes and, crucially, allows us to (i) simultaneously treat cold snaps and heatwaves as
equally detrimental to economic activity, and (ii) capture day-to-day temperature swings
between hot and cold. Using this measure, then, we find that many consumer-related sec-
tors, including energy, are affected by changes in temperature variability. For example, large
temperature swings can make shopping more or less difficult. Cold snaps and heatwaves can
shift consumer demand patterns and may adversely impact what Starr| (2000) calls "house-
holds’ shopping productivity". Starr-McCluer provides empirical evidence consistent with
these ideas using sector-level output data. This is also observable when considering macroe-
conomic output: (Colacito et al. (2019)) document that extreme heat in summer and autumn
months affect U.S. GDP growth rates.

The results in Panels A and B demonstrate the relevance of the temperature variability
effect over and above the temperature deviation effect. This divergence highlights the link
between temperature and stock markets by documenting the actual impact of temperature
variability on firms’ operations. Deviation in temperature variability represents a more gen-
eral depiction of temperature extremes than temperature deviation alone. Our measure is
therefore a meaningful indicator of physical risk, which has material consequences for the
stock price of firms.

In Table [§] we rerun the yearly stock return regression by splitting our sample into three
time periods, illustrating the robustness of our findings across the following sub-periods:
2005-2009, 2010-2014, 2015-2020. We focus on a small group of sectors that display some
interesting patterns: energy, consumer staples, and health care. The first two have significant
exposure to T'D-VAR over the sample period 2005-2020, see Table [7] Panel B. Table
provides the estimates for TD and TD-V AR for these three sectors. We report the results
for all other control variables in the Appendix (A Notably, the effect of T'D remains
insignificant in each sub-period, confirming the ﬁndmgs over the longer sample period in
Table [7] Over time, the estimates of the effect of TD-VAR on the energy sector decrease
and then increase, and the estimates are virtually identical for consumer staples. There is
no effect of TD-V AR on the health care sector. These results confirm that exposure to
temperature varies over time as the distribution of temperature and temperature variability
changes over time (Lewis and King| (2017), |Alessandri and Mumtaz| (2021))).

Given our initial sector-level evidence for the greater relevance of changes in temperature

16These papers examine various channels through which temperature affects economic output: manufac-
turing and labor productivity are sensitive to high temperatures, destruction of capital may occur at extreme
temperatures, and consumer demand tends to drop, coupled with a decreased total labor supply.
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variability over temperature deviations, a natural follow-up question is whether financial
market participants efficiently account for information on temperature deviation T'D and
deviations in temperature variability T'D-V AR. To answer this question, we shift our focus
to markets’ reactions to both temperature deviation T'D and deviations in temperature
variability T'D-V AR.

5.2 Reactions to local temperature information

In the previous section we perform an asset pricing factor analysis and examine the signifi-
cance of the two temperature metrics. We continue our investigation into the relationships
between these temperature metrics and expected stock returns by examining investors’ reac-
tions to state-level heterogeneity in temperature metrics. Specifically, we examine whether
investors could reduce their exposure to temperature by focusing on local temperature in-
formation. To hedge against temperature, investors would buy (short-sell) stocks in states
characterized by higher (lower) TD and TD-V AR, thus increasing (reducing) the prices of
these stocks and reducing (increasing) their return.

First, we sort states into quintiles based on their TD and TD-VAR exposure, and sort
stocks depending on companies’ headquarter locations. Then, we form long-short spread
portfolios: going long in the portfolio that includes states with the least exposure to T'D and
TD-V AR, and going short in the portfolio that includes states with the highest exposure to
TD and T'D-V AR. We examine whether the spread portfolios yield a statistically significant
abnormal performance. If they do, this would suggest that investors do react to temperature
information and, specifically, that they are pricing in the risk of temperature deviation, T'D,
and /or the risk of deviations in temperature variability, TD-V AR,.

Our portfolio-sorting approach allows us to capture the heterogeneity in temperature
across the U.S., similarly to Barber et al.| (2001)) and Hong et al.| (2020). The trading strategy
is constructed as follows. At the end of each month ¢, we rank states according to the specific
realization of TD and TD-V AR in month . Separately, we rank states based their T'D and
TD-VAR, and sort them into quintiles; we form T'D and T'D-VAR quintiles separately.
Each firm headquartered in a particular state is placed in one of the five quintiles for 7'D and
then for TD-VAR. The first T'D quintile portfolio, for example, consists of firms in those
states with the lowest values for temperature deviation. We consider these firms to have the
lowest exposure to temperature deviation. For each quintile, we compute the portfolio’s post-
ranking value-weighted monthly return. Next, we compute the long—short spread portfolio’s
monthly return. We repeat the process until we exhaust our sample period. This yields a
time series of 167 spread portfolio monthly returns.

To fix ideas, at time t, the value-weighted return, R, of a quintile portfolio p =
{1,2,3,4,5} is:

Npt—1

Rpt = Z Lit—1Tit- (14)
i=1

where 7;; is the stock return of firm 4-th at month ¢, and n,_; representing the number of
firms in the quintile portfolio p at month ¢ — 1. x;;_; represents the market capitalization of
firm ¢ divided by the total market capitalization of portfolio p at month ¢ — 1.
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Table |14] reports the mean excess returns net of the U.S. risk-free rate. We also re-
port portfolio alphas adjusted using the Fama-French three-factor model (Fama and French
(1993)), which controls for the market factor as well as size and book-to-market factors;
and the Fama-French-Carhart (Carhart| (1997))) four-factor model, which includes Carhart’s
momentum factor. The middle three quintiles are grouped together by equal-weighting their
respective returns.

In the first column of both panel A and B in Table [14], the mean excess returns are
largest in the first quintile portfolio, decline for portfolios 2-4, and increase slightly in the 5th
quintile. The mean excess return for states in the bottom quintile portfolio of 7D and T'D-
VAR is 0.81% per month and 0.74% per month, respectively; for states in the top quintile,
the mean excess return is 0.88% and 0.07%, respectively. The difference between quintile 1
(least exposed firms) and quintile 5 (most exposed firms) is 0.07% per month (t=x.xx) in
excess returns for 7D and 0.28% per month (t=x.xx) in excess returns for TD-V AR. This is
a respectable 47% return over the 14-year sample period. In columns (2) and (3), we report
the portfolio alphas adjusted using the three-factor and the four-factor models, respectively.
Notably, results are statistically significant only for T'D-V AR when including all four factors.
These results suggest that markets hedge the risk from deviations in temperature variability
TD-V AR, rather than the risk from temperature deviation T'D.

To the extent that local temperature anomalies might be concentrated in certain states,
the significant return spread of our long—short portfolio could reflect compensation for expo-
sure to a specific location or state risk. This is a plausible alternative as some states might
be systematically exposed to continual increases or decreases in temperature deviation, or
to deviations in temperature variability. Chronic exposure to abnormal temperatures would
result in lower returns across the board for firms headquartered in these states. These firms
could conceivably be less productive if the state in which they are headquartered is subjected
to a barrage of temperature shocks. To explicitly control for location or state risk, we follow
Barber et al.| (2001)), and construct two 5 X 5 transition matrices that illustrate the percent
of times a state shifts to a different quintile of T'D and T'D-V AR, respectively, at month
t 4+ 1. Table [J reproduces the two 5 X 5 transition matrices. The starting quintile of the
state is shown in the left-most column, while its quintiles at time ¢ + 1 are shown as the
remaining columns. To shed more light on the influence of each temperature metric on the
construction of the two portfolio strategies, we examine the frequency of states appearing
in the first (least exposed) and fifth (most exposed) quintiles for both 7D and TD — VAR
during our sample period. These figures are reported in Table

The diagonal of the transition matrix in Panel B of Table [J9] reveals that exposure to
TD — VAR is fairly persistent as some states do not move out of their initial quintile. The
top left value in Panel B reports that a firm beginning in quintile 1 has a 52.29% chance of
remaining in the first quintile. The values decline as we move into the middle quintiles, which
suggests that exposure to T'D — V AR is persistent. Some states are either extremely exposed
to deviations in temperature variability or not at all, and tend to stay near their quintile of
exposure. Thus, exposure to T'D — VAR is dependent on the state. In contrast, exposure
to temperature deviations (Panel A) is more erratic and less state-dependent. Fewer states
are consistently exposed to extreme temperature deviations. For example, states in the fifth
quintile are less likely to stay in this quintile, as the largest value in Panel A of Table [J
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is 25.36% compared to its TD — VAR counterpart of 55.54%. Results reported in Panel
A of Table [J therefore suggest that exposure to temperature deviation is less concentrated,
or, equivalently, that most states are equally exposed to temperature deviations. This phe-
nomenon is further illustrated in Table [I0] which shows how often a state transitions from
one quintile portfolio to another. Generally, changes in states’ sorting order occurs 25%-
40% more frequently when the ranking is based on their T'D rather than their T'D-V AR.
The persistence of states’ exposure to T'D-V AR tells us that large changes in temperature
variability are more concentrated vis-a-vis large changes in temperature. Temperature de-
viations occur uniformly across the U.S., with few states systematically subjected to large
deviations in temperature. In contrast, a few states are continually unaffected by deviations
in temperature variability.

These results highlights a significant difference between T'D — VAR and TD. The
idiosyncratic persistence of TD — VAR, particularly in the first and fifth quintiles, could
influence the construction of our portfolio strategy. In fact, the tops and bottom of our
TD — VAR rankings are dominated by two states each: the Dakotas are consistently in
the least exposed portfolio, Panel A in Table for over half the sample period; Alaska
and California are consistently in the most exposed portfolio, Panel B in Table Crucially,
these four states are continually exposed to low and high values, respectively, for deviations in
temperature variability. State rankings in the middle quintiles tend to vary more frequently
across quintiles and are less bound to their original exposure. Table displays the T'D
equivalent. One peculiarity is that North Dakota, Montana, Idaho, Kansas, Nevada and
Wyoming occur in both the first and fifth quantiles of T'D. Crucially, this indicates large
swings in temperature deviations in these states; this is aptly captured by our T