
The New Benchmark for Forecasts of the Real Price of Crude Oil∗

Amor Aniss Benmoussa† Reinhard Ellwanger‡ Stephen Snudden§¶

Abstract
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1 Introduction

The real price of crude oil is a key global macroeconomic indicator that has attracted considerable

attention among forecasters. A growing literature documents that model-based forecasts of the

monthly real price of crude oil can outperform a simple no-change benchmark (Ye et al., 2005;

Baumeister and Kilian, 2012; Alquist et al., 2013; Baumeister et al., 2014; Baumeister and Kilian,

2014, 2015; Wang et al., 2015; Yin and Yang, 2016; Snudden, 2018; Zhang et al., 2018; Funk, 2018;

Garratt et al., 2019). The conventional interpretation of these results is that model-based forecasts

are more useful than naive forecasts, and that the real price of oil is predictable relative to the

random walk forecast.

However, the real price of oil used in all of these studies is a monthly average price, which

is problematic for several reasons.1 First, the correct no-change forecast implied by the random

walk model is the last observed closing price rather than the last observed monthly average price

(Ellwanger and Snudden, 2021b). Second, average prices are predictable relative to the monthly no-

change forecast by construction for a large class of data generating processes, including the random

walk (Working, 1960) and arbitrary ARIMA processes (Ellwanger and Snudden, 2021b). Both

results call into question the usefulness of comparing model-based forecasts to the conventional

no-change benchmark. Moreover, estimating models with temporally aggregated data is known to

reduce forecast efficiency (Wei, 1978; Kohn, 1982), which can be remedied by using disaggregated

data in forecasts of aggregated variables (see, e.g. Lütkepohl, 1984; Ellwanger and Snudden, 2021b).

Based on these insights, the goal of this paper is to study the effects of introducing daily oil-price

data in computing and evaluating model-based forecasts of the monthly real price of crude oil.

Our first contribution is to evaluate the performance of different no-changes forecasts across

various crude oil price series. Ellwanger and Snudden (2021b) showed that the random walk

forecast constructed from daily Brent prices improves the accuracy of the conventional no-change

forecast constructed from monthly average prices. We document similar gains from the random

walk forecast based on daily WTI prices. The improvement in the one-step-ahead mean squared

prediction error (MSPE) and the directional accuracy are larger than 40 percent. The gains decrease

with the forecast horizon, but are still apparent up to the 12-months-ahead forecast. Moreover, we

show that any averaging over end-of-month prices worsens the forecast accuracy for both the Brent

1The standard series that are used in structural models and forecasting applications of real oil prices are based
on monthly averages of daily prices (this is the case for the oil-price series used in Kilian, 2009; Alquist et al., 2013;
Kilian and Murphy, 2014; Baumeister and Hamilton, 2019, among many others).
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and the WTI forecasts. The success of the random walk forecast bears important consequences

for forecast evaluations because it raises the bar for model-based forecasts to claim any practical

usefulness. For example, we find that the original evidence for the short-run predictability of the

real price of oil presented in Baumeister and Kilian (2012) is overturned when their model-based

forecasts are compared to the new random-walk benchmark instead of the conventional, average-

price no-change forecast.

Our second contribution is to show how the use of disaggregated data can be extended to the

forecasts of the U.S. refinery acquisition cost of crude oil (RAC), which is often used in lieu of other

crude oil prices because of its longer history (Alquist et al., 2013). Using disaggregated data for

the RAC is complicated by the fact that the RAC is published as a monthly survey. To circumvent

this problem, we propose a simple method to impute quasi-end-of-period RAC observations from

end-of-period WTI prices. Similar to the previous exercise, the random walk forecast based on the

imputed end-of-period RAC yields large forecasting gains over the traditional no-change forecast,

with over 30 percent improvements in the MSPE at short horizons. This shows that dis-aggregation

of averaged series is useful even in cases where end-of-period observations are not directly observable.

Our third contribution is to evaluate the effectiveness of model-based forecasts that rely on

disaggregated data. This includes Lütkepohl (1984)’s approach of estimating models for the daily

oil prices and aggregating the forecasts to the monthly frequency. We also compute forecasts under

period-end price sampling (PEPS), which selectively samples end-of-period real prices and uses

them to replace average prices in model estimations and forecasts (Ellwanger and Snudden, 2021b).

We find that both Lütkepohl (1984)’s and the PEPS approach can yield large improvements relative

to the conventional no-change forecast and to models estimated with averaged data. However,

PEPS tends to perform better for most forecast horizons. The results improve on existing MIDAS

forecasts of the real price of crude oil, which represents the main attempt to include higher-frequency

variables in forecasts of the real price of oil so far (see, e.g. Baumeister et al., 2015).

A practical advantage of PEPS is that it maintains the lower frequency of the target vari-

able, which allows forecasters to incorporate end-of-period observations easily into existing models.

To this end, we compare the performance of Bayesian and classically estimated autoregressive

(BAR/AR) and vector autoregressive (BVAR/VAR) models from Baumeister and Kilian (2012),

which are estimated with averaged data, to the PEPS forecasts for these models. For the empirical

application, we update the real-time dataset created by Baumeister and Kilian (2012).2 Again, the

2Our data set improves upon other studies that have updated the Baumeister and Kilian (2012) real-time data
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PEPS approach results in forecast improvements of over 40 percent over the original Baumeister

and Kilian (2012) specification, and the improvements are remarkably stable over time. However,

despite these substantial forecast improvements over the conventional no-change forecast and mod-

els estimated with averaged data, the models estimated with disaggregated data generally do not

outperform the random-walk forecast.

Finally, we also investigate other practical implications of introducing disaggregated data into

oil-price forecasts. For example, we find that the switch from average to end-of-period observations

generally reduces the desired number of autoregressive lags in univariate models. We also show

that it reduces relative importance of covariates, as alternative indicators of inventories and real

economic activity indicators provide very similar forecasts under the PEPS approach. While we

find some evidence that forecast combinations can outperform the random walk model at long

forecast horizons, our results are consistent with oil prices being unpredictable at short forecast

horizons.

Our results highlight the importance of using disaggregated oil prices in the context of forecast-

ing the average real price of crude oil. Although our setup is new, the results are broadly consistent

with several distinct pieces of evidence provided in earlier studies.3 For example, Baumeister and

Kilian (2014) document that the monthly average random-walk model forecasts average quarterly

prices better than the quarterly average random-walk model. Baumeister and Kilian (2012) show

that most forecasting gains from using revised data stem from improved information on prices,

while Bork et al. (2019) and Conlon et al. (2022) document that averaging commodity prices can

introduce spurious predictability in the context of return-forecasting regressions. These results are

all indicative that time-averaging could introduce a mechanical loss of information about future

price levels. Herein, we show that the introduction of disaggregated data restores this information

and changes the assessment of model-based forecasts of the real-price of crude oil.

2 Real-time Data

The focus of our empirical application is real-time forecasts of the level of the monthly average real

price of crude oil, which is the standard approach in the literature (Baumeister and Kilian, 2012;

Alquist et al., 2013). In this setting, the forecaster uses the available information at the end of each

set by incorporating all available monthly vintages of the US Energy Information Administration’s MER report.
3End-of-period prices have previously been used to evaluate the predictive content of oil-futures prices for the

end-of-month nominal oil prices by Alquist and Kilian (2010). However, in the subsequent literature on forecasts for
the real price of crude oil, average prices have become the standard for estimation and forecast evaluation.
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month to form their prediction for the following months. Forecasts are examined for the monthly

series of WTI and Brent crude oil prices, as well as the RAC.

Crude oil prices and the RAC are obtained from the U.S. Energy Information Administration

(EIA). For Brent and WTI, the EIA reports the average monthly price as simple averages of the

daily closing price. We construct a series of end-of-month prices by taking the closing price on the

last trading day of each month, which represents the last observed price contained in the forecaster’s

monthly information set. For WTI and Brent crude oil prices, both the end-of-month price and

the monthly average price are observed in real time.4

Disaggregating the RAC is complicated by the fact that no daily price series exists. For our

empirical analysis, we impute two distinct series of artificial end-of-period RAC observations by

applying the growth rate of the end-of-month WTI (Brent) oil price over the monthly average WTI

(Brent) oil price to the monthly RAC price.5 Thus,

pRAC
t,n = pRAC

t,a · (pxt,n/pxt,a), (1)

where pt,n stands for the end-of-period observation, pt,a stands for the monthly average. The

superscript RAC denotes the RAC nominal price series and x ∈ {WTI,Brent} is the price series

used for imputation of the pseudo-end-of-period calculation.

Nominal monthly average prices, end-of-month prices and the RAC are all converted to real

prices using the seasonally adjusted U.S. consumer price index. The price index is the seasonally

adjusted U.S. consumer price index obtained from the FRASER database of the Federal Reserve

Bank of St. Louis and the real-time database of the Philadelphia Federal Reserve.

A contribution of this paper is to extend the real-time data of Baumeister and Kilian (2012)

using historical data vintages from the EIA’s Monthly Energy Review and Short-Term Energy

Outlook. Other than in earlier updates of this dataset provided in Garratt et al. (2019), we collect

all monthly vintages after 2010M12, which allows us to include revisions for the entire history

of each vintage.6 Real-time data vintages start in 1991M1 and contain historical data starting

from 1973M1. Real-time data on U.S. crude-oil inventories, U.S. petroleum inventories and OECD

petroleum inventories are obtained from historical releases in the EIA’s Monthly Energy Review

or the International Data Browser. The real-time version of Kilian (2009)’s real economic activity

4See Appendix A1 for details.
5This is akin to the standard practice of nowcasting the average nominal RAC via the growth rate of WTI prices

(see, e.g. Baumeister and Kilian, 2012).
6See Appendix A1 for details.
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index is computed using the corrected formula (Kilian, 2019).

All nowcasts follow Baumeister and Kilian (2012). For example, the monthly average RAC is

nowcasted using the month-over-month growth rate of the monthly WTI series. Any missing real-

time observations for the consumer price index are nowcasted using the average historical growth

rate. To nowcast the imputed end-of-period observations for the RAC, we use the historical vintage

of the nowcasted RAC prices at the time of the forecast. As discussed in Section 4, none of the

main results are affected by different nowcasting choices.

For estimation of econometric models, prices for Brent and WTI are backcasted to 1973M1. The

series of WTI and Brent prices provided by the EIA begin in 1986M1 and 1987M5, respectively.

Prices are backcasted to 1983M4 using the growth rate of the nearby WTI futures contract. All

monthly prices before 1983M4 are backcasted using the growth rate of the RAC. Our main findings

are robust to estimating models with data starting in 1983 or 1986.

All forecasts are computed out-of-sample, beginning in 1992M1. Models are estimated with an

expanding window using data beginning in 1973M1. To be consistent with the existing literature,

the MSPE ratio and the success ratio for directional accuracy are reported relative to the monthly

average no-change forecast. However, we also test for statistically significant improvements vis-à-

vis the random-walk no-change forecast following Ellwanger and Snudden (2021b). Statistical tests

for the null hypothesis of equal predictability using the MSPE ratio follow Diebold and Mariano

(1995), while the null hypothesis that the success ratios are drawn at random are assessed using

the test of Pesaran and Timmermann (2009).7 Both tests account for serial dependence in the

forecasts.

3 Real-time Forecasts

The effects of introducing end-of-month prices on real-time forecasts of the real price of crude oil

are investigated in several exercises. First, we compare no-change forecasts based on end-of-month

data to the standard average-price no-change forecast for alternative oil price series. Second, we

compare the performance of two forecasting approaches that rely on disaggregated data in univariate

time-series models. Third, we replicate the econometric models proposed in Baumeister and Kilian

(2012) and compare the forecasts from the original models to forecasts from models estimated with

7With real-time data and the iterative out-of-sample forecasting setup, the assumptions of the Diebold-Mariano
test are not fulfilled in our setup (Kilian, 2015). As is standard, the ratios are still reported with this warning in
mind.

5



period-end prices. Fourth, we examine how the use of end-of-month observations affects the choice

of lag length and covariates in forecasting models. Finally, we examine whether oil futures prices

and forecast combinations can improve the accuracy of short-term forecasts based on disaggregated

data.

3.1 Comparison of No-Change Benchmarks

The literature on forecasts of the real crude oil price has focused on the average real price of crude oil.

Throughout the paper, we maintain the goal of forecasting this average real price, Rx
t,a = pxt,a/CPIt,

where pxt,a is the monthly average of daily nominal closing prices, denoted by subscript a, CPIt is

the U.S. consumer price index, and x is the crude oil price series, such as WTI or Brent. It has

been standard practice to compare the performance of a forecast of this real price h steps ahead,

R̂x
t+h|t,a, to that of the average-price no-change forecast:

R̂x,no−change
t+h|t,a = Rx

t,a. (2)

However, Ellwanger and Snudden (2021b) show that for many macroeconomic series, the forecast

performance of the conventional no-change forecast in equation (2) is dominated by the random

walk no-change forecast that is based on end-of-period observations:

R̂x,random−walk
t+h|t,a = Rx

t,n, (3)

where Rx
t,n = pxt,n/CPIt and n denotes the last disaggregated observation within a given period, the

closing price on the last trading day of the month. The forecast in Equation (3) corresponds to a

random walk model for daily prices (rather than for monthly averages prices) and yields large MSPE

gains over the average-price no-change forecast under the null hypothesis that all future prices are

unpredictable (Ellwanger and Snudden, 2021b). In this section, we investigate the performance and

robustness of the random-walk no-change forecast across different crude-oil markers and against

alternative measures of average end-of-month prices.

The first two columns of Table 1 report the MSPEs and success ratios for the random-walk

forecasts relative to the monthly average no-change forecasts. The random-walk forecasts are signif-

icantly more accurate than the monthly average no-change forecasts, with accuracy-improvements

of over 40 percent at the one-month-ahead-horizon. The result holds for both Brent and WTI.

The improvements in the success ratio are largest for the one-step-ahead prediction, but remain
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Table 1. Random-Walk vs Average-Price No-Change Forecasts of the Real Price of Crude Oil

Price Brent WTI RAC RAC WTI WTI WTI

Sampling EoM EoM Brent EoM WTI EoM EoM 2 Day 
Avg.

EoM 1 
Week Avg.

EoM 2 
Week Avg.

Horizon
1 0.58 (0.000) 0.59 (0.000) 0.70 (0.003) 0.70 (0.001) 0.60 (0.000) 0.67 (0.000) 0.78 (0.001)
3 0.92 (0.017) 0.89 (0.012) 0.91 (0.031) 0.89 (0.010) 0.89 (0.017) 0.92 (0.025) 0.95 (0.071)
6 0.98 (0.123) 0.95 (0.029) 0.98 (0.131) 0.95 (0.027) 0.96 (0.044) 0.98 (0.155) 0.99 (0.297)

12 0.98 (0.170) 0.96 (0.028) 0.99 (0.191) 0.96 (0.018) 0.98 (0.116) 1.00 (0.473) 1.01 (0.714)
24 1.00 (0.443) 0.99 (0.189) 1.00 (0.422) 0.98 (0.123) 1.00 (0.440) 1.01 (0.838) 1.01 (0.936)

1 0.72 (0.000) 0.71 (0.000) 0.70 (0.000) 0.71 (0.000) 0.70 (0.000) 0.70 (0.000) 0.67 (0.000)
3 0.57 (0.005) 0.61 (0.000) 0.60 (0.000) 0.61 (0.000) 0.61 (0.000) 0.59 (0.000) 0.57 (0.006)
6 0.56 (0.013) 0.55 (0.057) 0.58 (0.001) 0.58 (0.006) 0.56 (0.039) 0.55 (0.043) 0.55 (0.047)

12 0.59 (0.000) 0.57 (0.007) 0.58 (0.001) 0.57 (0.009) 0.58 (0.003) 0.56 (0.017) 0.52 (0.322)
24 0.56 (0.015) 0.52 (0.292) 0.55 (0.027) 0.54 (0.153) 0.51 (0.415) 0.49 (0.737) 0.47 (0.880)

MSPE Ratio

 Success Ratio

Notes: Random walk versus monthly average no-change forecasts for alternative crude oil prices benchmarks,
1992M1–2021M1. The random walk forecast is the no-change forecast computed from the end-of-month closing
price. EoM refers to end-of-month observations. Brent EoM and WTI EoM stand for RAC closing prices
which are imputed using Brent and WTI prices, respectively. Avg. stands for average. Brackets report the
p-values for serial dependence robust tests of Pesaran and Timmermann (2009) for the null of no directional
accuracy and Diebold and Mariano (1995) for equal MSPEs relative to the monthly average no-change forecast.

substantial and often significant for longer-term forecasts. For the MSPEs, the gains decrease as

the forecasting horizon increases but are still statistically significant at the 5 percent significance

level for up 12-months-ahead forecast. The decay in the relative forecasting performance is quanti-

tatively very similar to the theoretical prediction of the pure random walk model for daily oil prices

(Ellwanger and Snudden, 2021b). These results hence corroborate the idea that crude oil prices

are closely approximated by a random walk at the daily frequency.

The performance of the quasi end-of-period random walk forecast for the RAC is also very

good, with accuracy-improvements of 30 percent at the one-step-ahead prediction. For all forecast

horizons, the MSPE and success ratios of the imputed end-of period price of RAC do at least as

well as the monthly average no-change forecast, and often significantly better. This is true whether

the RAC closing prices are imputed using WTI or Brent prices. However, the imputation using

the WTI price produces lower MSPE ratios beyond the one-month-ahead horizon. These results

highlight that the even in cases where the end-of-period price is not directly observed, attempts to

dis-aggregate such series can yield first-order forecast gains.

Price-averaging could be potentially useful for forecasters as it tends to reduce the variance of

the underlying series. This is particularly true when the series is affected by random errors, which

could occur from measurement error or from market-microstructure dynamics. Table 1 reports the
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no-change forecasts that are computed from averaging daily closing prices over the last two trading

days, the last week of trading, and the last two weeks of trading before the end of the month. The

results indicate that there is no benefit from averaging, as it only leads to a deterioration in the

forecast performance. Moreover, this worsening increases with the length of the averaging window.

Thus, in practice, the benefits from using end-of-month prices clearly outweigh the concerns over

increasing the volatility relative to average price.8

Figure 1. Recursively Estimated Random Walk Forecasts vs Average-Price No-Change Forecasts

Notes: Relative forecast performance of random walk forecasts versus monthly average no-change forecasts of the
real price of crude oil, 1992M1–2021M1. The first 30 months are omitted to reduce starting-point effects. The RAC
end-of-month price is imputed using daily WTI crude oil prices. The left panel shows the evolution of the MSPE
ratio of the one-month-ahead random walk forecast relative to the average-price no-change forecast. The right panel
shows the evolution of the directional accuracy as measured by the success ratio.

How stable are these results over time? The performance of previously proposed forecast meth-

ods for the real price of crude oil are often very sensitive to the sample period (Baumeister et al.,

2014; Baumeister and Kilian, 2015; Snudden, 2018; Garratt et al., 2019; Baumeister et al., 2020).

By contrast, as Figure 1 documents, the forecast improvements of the end-of-month relative to the

monthly average no-change forecast at the one-month-ahead horizon are robust across all potential

sample end dates between 1995 and 2021. The improvements in the MSPE and success ratio are

statistically significant at the 5 percent level for 100 percent of the sample, which is remarkable for

oil-price forecasts. As such, end-of-period prices seem to restore a mechanical loss of information

in average prices which is largely independent of the oil-price behavior over specific episodes.

The good performance of the random walk forecast is generally consistent with the idea that

daily crude oil prices are well approximated by a random walk. In line with theoretical results

for forecasts of temporally aggregated non-stationary series, averaging worsens the forecast perfor-

mance of the no-change forecast (see, e.g. Working, 1960; Wei, 1978). Our results suggest that the

8The empirical variances of the monthly closing prices of crude oil are statistically indistinguishable from the
variances of the monthly average prices of crude oil (see Appendix A1). This suggests that the improvements from
using closing prices is driven by a smaller bias, again consistent with a random walk model for daily prices.
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random-walk no-change forecast, computed from the last observed closing price, should be used as

a benchmark for forecast evaluations of the real price of crude oil. This new benchmark produces

large forecast gains over the conventional, average-price no-change forecast and thus raises the bar

for model-based forecast to claim any usefulness over naive forecasts. The practical importance of

this effect is highlighted throughout the remainder of this paper.

3.2 Disaggregated Data for Univariate Models

A common feature of existing forecasts of the real price of crude oil is that models are estimated with

monthly average prices. However, estimating models with temporally aggregating data can lead to a

loss of information and reduce forecasting efficiency (Wei, 1978; Kohn, 1982). This section explores

whether and how forecasts relying on daily oil-price data can help restore this information and thus

improve traditional oil-price forecasts based on monthly data. To the best of our knowledge, this

paper presents the first application of models estimated with daily crude oil prices to forecast the

average real price of crude oil.

One approach to deal with aggregation is to estimate models and compute forecasts for dis-

aggregated data first, and to aggregate the forecasts to the desired lower frequency afterwards

(Lütkepohl, 1984). This approach avoids aggregation and the associated information loss alto-

gether. In our context, this implies estimating models for daily oil prices and taking the monthly

average over the forecasted daily prices.

Ellwanger and Snudden (2021b) propose an alternative approach that includes information

from daily prices but maintains the lower frequency of the dependent variable: period-end price

sampling (PEPS). In our context, this method uses end-of-month closing prices instead of monthly

average prices in econometric models. The model-implied forecasts for end-of-period prices are

then taken to predict average prices. The PEPS approach is potentially useful when daily prices

behave similar to a random walk, in which case expectations of future average and end-of-period

observations coincide. It often reduces the number of estimated parameters and might therefore

produce better out-of-sample forecasts than models estimated for daily data.

Another approach that relies on disaggregated data is mixed-data sampling (MIDAS, see Ghy-

sels et al., 2007). MIDAS allows forecasters to forecast aggregated variables with higher frequency,

disaggregated predictors. The MIDAS approach has been applied to forecasts of the real price of

crude oil with some success by Zhang and Wang (2019) and Degiannakis and Filis (2018). However,

while the approach has been shown to result in forecast gains, the gains are usually not so large as
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to be able to improve upon forecast based on aggregated prices (Baumeister et al., 2015). Given

that this method is well documented in previous papers and their forecast performance is worse

than that of the random-walk no-change forecast, we do not replicate them here.

This section compares forecasts from three different types of univariate models of the real

price of WTI crude oil. Specifically, we consider autoregressive models, AR(p), autoregressive

moving average models, ARMA(p,q), and autoregressive models with autoregressive conditional

heteroskedasticity in the innovations, AR-ARCH(p,m). The models are estimated using monthly

average data (as is standard in the existing literature), daily data (Lütkepohl (1984)’s “disaggre-

gated” approach), and end-of-month data (the PEPS approach).

For the disaggregated and the PEPS approach, the current-month CPI index is used to deflate

the end-of-the month observation. To deflate intra-month observations under the disaggregated

approach, a daily real-time measure of the CPI is interpolated using a cubic spline, but the results

are robust to linear interpolation. We follow standard parameterizations for the lag length.9 For

models estimated with monthly data, the models are AR(2), ARMA(1,1), and AR-ARCH(2,1).

Since there are about 22 business days in a month, the corresponding models for the daily data

are AR(44), ARMA(22,22), and ARCH(44,1). However, similar to Lütkepohl (1984) we found that

ARMA models with long lags and in particular the ARMA(22,22) model resulted in ill-conditioned

optimization problems. We therefore consider an ARMA(1,1) model for daily data instead. None

of our qualitative results is affect by this choice.

The models are estimated in a recursive fashion, starting in 1973M1 for the monthly models

and in 1986M1 for the disaggregated approach. The evaluation period is 1992M1-2021M1. The

models are estimated with prices in log real levels and forecasts are converted to real levels,

R̂x
t+h|t,j = exp

(
ˆ̄rxt+h|t,j

)
, (4)

where j ∈ {a, n} for oil series x, ˆ̄rxt+h|t,j is forecast of the real price in logs, and exp is the exponential

function. Forecasts for daily prices are averaged to monthly forecasts after transforming to levels.

The first three columns of Table 2 report the forecast performance of the univariate models

when estimated using the standard monthly average price series. Most of these models can out-

perform the average price no-change forecasts, especially at shorter forecast horizons. However,

the improvements appear relatively modest (below 10 percent) and, for the most part, not statis-

9The relationship between temporal aggregation and the lag length of forecasting models is further investigated
in Section 3.4.
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Table 2. Forecasts of the Real Price of WTI Crude Oil Based on Univariate Models

Model AR(2) ARMA(1,1)  AR-ARCH 
(2,1)  AR(44) ARMA(1,1)  AR-ARCH 

(44,1)  AR(2) ARMA(1,1)  AR-ARCH 
(2,1)  

Method
Horizon

1 0.90 (0.156) 0.91 (0.131) 0.93 (0.071) 0.60 (0.000) 0.61 (0.000) 0.62 (0.000) 0.56 (0.001) 0.56 (0.001) 0.63 (0.000)
3 0.95 (0.333) 0.95 (0.256) 0.97 (0.213) 0.94 (0.219) 0.98 (0.429) 0.98 (0.307) 0.84 (0.113) 0.84 (0.088) 0.87 (0.021)
6 0.96 (0.406) 0.96 (0.335) 0.99 (0.382) 1.05 (0.754) 1.08 (0.653) 1.15 (0.876) 0.89 (0.215) 0.89 (0.180) 0.89 (0.054)

12 0.98 (0.463) 0.95 (0.336) 0.99 (0.386) 1.12 (0.830) 1.18 (0.773) 1.33 (0.948) 0.90 (0.250) 0.89 (0.190) 0.85 (0.020)
24 1.05 (0.589) 0.96 (0.409) 1.03 (0.695) 1.18 (0.835) 1.33 (0.891) 1.67 (0.960) 0.95 (0.385) 0.92 (0.308) 0.82 (0.015)

1 0.52 (0.315) 0.53 (0.107) 0.53 (0.305) 0.72 (0.000) 0.68 (0.000) 0.72 (0.000) 0.71 (0.000) 0.72 (0.000) 0.70 (0.000)
3 0.49 (0.638) 0.52 (0.093) 0.50 (0.802) 0.55 (0.075) 0.53 (0.145) 0.57 (0.041) 0.58 (0.002) 0.59 (0.000) 0.61 (0.000)
6 0.49 (0.652) 0.48 (0.554) 0.46 (0.971) 0.48 (0.567) 0.50 (0.399) 0.52 (0.457) 0.53 (0.276) 0.54 (0.096) 0.59 (0.012)

12 0.54 (0.250) 0.53 (0.213) 0.52 (0.577) 0.50 (0.399) 0.53 (0.198) 0.50 (0.633) 0.54 (0.261) 0.56 (0.064) 0.58 (0.055)
24 0.59 (0.063) 0.54 (0.190) 0.53 (0.479) 0.57 (0.065) 0.56 (0.070) 0.46 (0.925) 0.61 (0.035) 0.56 (0.086) 0.60 (0.042)

 Success Ratio

Monthly Average Prices Period-End Price SamplingDaily Prices 
MSPE Ratio

Note: Real-time, out-of-sample forecasts for the real price of WTI crude oil, 1992M1–2021M1. Models estimated with
”Daily Prices” are aggregated to the monthly frequency following (Lütkepohl, 1984); Models estimated with ”Period-
End Price Sampling” follow Ellwanger and Snudden (2021b). The brackets show the p-values serial-dependence-
robust tests of Diebold and Mariano (1995) for the null hypothesis of equal MSPEs relative to the monthly average-
price no-change and of Pesaran and Timmermann (2009) for the null of no directional accuracy. Boldface values
indicate improvements over the random-walk no-change forecast at the five percent level.

tically significant. The results from the disaggregated approach, shown in the next three columns,

show about 40 percent improvements at the 1-step ahead prediction for all three models. The

improvements are significant at the 0.1 percent significance level and apply to both the MSPE

ratios and the success ratios. However, for longer forecast horizons, the performance of the models

deteriorates quickly. For 6-months-ahead and longer, the MSPE ratios indicate that forecasts from

the disaggregated approach are worse than the average-price no-change forecast. The worsening

performance of the MSPE at longer horizons could be because the daily WTI sample starts later, in

1986M1. Moreover, the AR and AR-ARCH models are heavily parameterized, which could weigh

on their out-of-sample performance.

The forecasts based on the PEPS approach are evaluated in the final 3 columns of Table 2. For

all horizons and models, the forecasts outperform the conventional no-change benchmark. At the

one-step ahead, the PEPS approach results in the largest improvements in forecast accuracy of up to

44 percent, which are significant at the 0.1 percent level. Although the forecast performance tends to

decrease with the forecast horizons, the performance of the AR-ARCH model remains significantly

better than that of the average-price no-change forecast at longer horizons. The success ratios are

also significant at the ten percent level for all horizons for the ARMA and AR-ARCH forecasts.

Overall, these results suggest that forecast approaches employing disaggregated methods sig-

nificantly outperform models estimated with averaged data. It can be shown that this increase
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in performance is very stable over time. For the disaggregated and PEPS approach, the one-step

ahead forecast gains are relatively stable and remain significant for all ending dates of the forecast

evaluation sample. However, when using average prices, the forecast performance depends on the

choice of evaluation period.

Finally, Table 2 also shows the importance of the choice of the benchmark to evaluate forecast

models of the real price of oil. Whereas the conventional interpretation of these results would be

to advocate for the use of model-based forecasts and to declare the price of oil predictable, the

absence of boldface values (for all but one long-run forecast) suggest that none of the forecast mod-

els/methods significantly improve upon the random-walk no-change forecast at short and medium

horizons. This further highlights that improvements over the average-price no-change benchmark

are, by themselves, not suitable to provide evidence in favor of model-based approaches.

3.3 Disaggregated Data for Multivariate Models: Replication of Baumeister

and Kilian (2012)

A practical advantage of using the period-end price sampling approach proposed by Ellwanger and

Snudden (2021b) is that it is easily extended to multivariate models that include lower-frequency

predictor variables. Existing multivariate forecast models of the real price of crude oil can thus be

adapted by replacing the monthly average with end-of-month prices. We illustrate this point by

investigating the performance of the Bayesian and classically estimated autoregressive (BAR/AR)

and vector autoregressive (BVAR/VAR) model-based forecasts of Baumeister and Kilian (2012) for

both averaged and end-of-period prices.

Following Baumeister and Kilian (2012), the BVAR/VAR models include four oil-market vari-

ables: oil prices, the growth rate of global oil production, a proxy for the change in global crude

oil inventories, and the REA as a measure of global economic activity. The estimation (including

priors for the Bayesian models) follows Baumeister and Kilian (2012). Accordingly, we consider

models with 12 autoregressive lags, and all models are estimated with prices in log real levels and

forecasts are converted to real price levels.10 Our exhibits focus on forecasts of WTI crude oil prices

(similar results are obtained for Brent prices) and the RAC.

Table 3 reports the forecast performances of the (B)AR and (B)VAR models for the real price

of WTI crude oil for the full sample going to 2021. In the updated sample, the models estimated

with average prices do not significantly improve upon the monthly average-price no-change forecast.

10Similar results are obtained for models with 24 lags.
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Table 3. Forecasts of the Real Price of WTI Crude Oil from Key Models of Baumeister and
Kilian (2012) Estimated with Average Prices and End-of-Month Prices

Method
Model BVAR VAR AR BAR BVAR VAR AR BAR

Horizon
1 0.97 (0.374) 1.05 (0.633) 0.93 (0.239) 0.92 (0.147) 0.62 (0.004) 0.74 (0.083) 0.58 (0.002) 0.57 (0.001)
3 1.04 (0.630) 1.05 (0.630) 0.98 (0.440) 0.97 (0.359) 0.94 (0.299) 0.91 (0.344) 0.87 (0.126) 0.86 (0.081)
6 1.08 (0.847) 1.15 (0.916) 1.02 (0.565) 1.00 (0.503) 1.04 (0.657) 0.99 (0.464) 0.94 (0.271) 0.92 (0.168)

12 1.15 (0.918) 1.28 (0.987) 1.05 (0.632) 1.00 (0.500) 1.13 (0.813) 1.11 (0.793) 0.96 (0.362) 0.92 (0.190)
24 1.12 (0.776) 1.34 (0.946) 1.13 (0.728) 0.98 (0.455) 1.07 (0.694) 1.03 (0.570) 0.99 (0.470) 0.91 (0.237)

1 0.46 (0.885) 0.45 (0.952) 0.50 (0.519) 0.48 (0.730) 0.70 (0.000) 0.69 (0.000) 0.72 (0.000) 0.72 (0.000)
3 0.53 (0.208) 0.50 (0.414) 0.48 (0.745) 0.51 (0.274) 0.60 (0.001) 0.58 (0.005) 0.57 (0.008) 0.61 (0.000)
6 0.54 (0.188) 0.53 (0.152) 0.49 (0.641) 0.49 (0.594) 0.60 (0.004) 0.61 (0.001) 0.54 (0.191) 0.53 (0.258)

12 0.55 (0.164) 0.54 (0.139) 0.55 (0.175) 0.53 (0.288) 0.57 (0.064) 0.61 (0.002) 0.55 (0.196) 0.53 (0.222)
24 0.51 (0.377) 0.53 (0.145) 0.59 (0.079) 0.58 (0.077) 0.54 (0.227) 0.59 (0.019) 0.59 (0.060) 0.59 (0.048)

Period-End Price SamplingMonthly Average Prices

MSPE Ratio

 Success Ratio

Note: Real-time, out-of-sample-forecasts of the real price of WTI crude oil, 1992M1–2021M1. All models are
estimated with 12 autoregressive lags. The brackets show the p-values serial-dependence-robust tests of Diebold
and Mariano (1995) for the null hypothesis of equal MSPEs relative to the monthly average-price no-change
and of Pesaran and Timmermann (2009) for the null of no directional accuracy. Boldface values indicate
improvements over the random-walk no-change forecast at the five percent level.

This deterioration in forecast accuracy is consistent with evidence from other recent studies (Funk,

2018; Snudden, 2018; Baumeister et al., 2020). The multivariate models have larger MSPEs than

the average-price no-change forecast at all forecast horizons and exhibit only small, insignificant

improvements in terms of directional accuracy. The (B)AR models tend to perform better, although

significant improvements can only be found in directional accuracy at the 10 percent level at the

24-month horizon. Figure 2 depicts the evolution of the forecast criteria over time and shows that

deterioration in the MSPE ratios, particularly for the BVAR, occurs mostly during the years 2010

to 2014.

By contrast, the models estimated with end-of-period prices outperform the same models esti-

mated with monthly average prices in almost all cases, and significantly so at short horizons. As

shown in Figure 2, the improvements in forecast-accuracy at the 1-step ahead prediction forecast

are of the order of 40 percent and robust to all forecast evaluation sample ending dates between 1995

and 2021. Even during the peak performance of the BVAR model around 2008, forecast improve-

ments as large as 40 percent could have been realized by estimating the model with end-of-period

prices rather than monthly average prices.

The RAC forecasts exhibit a similar pattern. Figure 3 shows that estimating models with the

quasi-end-of-month observations instead of the average RAC yield forecast improvements of over

30 percent, which are again robust for all sample end dates between 1995 and 2021. This highlights
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Figure 2. Recursive Forecasts of the Real Price of WTI crude oil from Baumeister and Kilian
(2012)’s Models Estimated with End-of-Month and Average Prices

Note: Dynamic, recursive, out-of-sample forecasts of the real price of WTI crude oil, 1992M1–2021M1. Models are
estimated with 12 lags. “EoM” refers to models estimated with quasi-end-of-month prices. Forecast criteria reported
include the recursive MSPE expressed as a ratio relative to the monthly average no-change forecast. Success ratios
represent the fraction of times the forecast correctly predicts the direction of change in the real price of oil. The first
30 months are dropped to reduce starting-point effects.

that even in the case where the end-of-periods observations are not available, approximating such

observations with simple imputation methods can produce large and robust forecast gains in the

context of multivariate models.

Figure 3. Recursive Forecasts of the RAC from Baumeister and Kilian (2012)’s Models Estimated
with End-of-Month and Average Prices

Note: Dynamic, recursive, out-of-sample forecasts of the RAC, 1992M1–2021M1. Models are estimated with 12 lags.
“EoM” refers to models estimated with quasi-end-of-month prices. Forecast criteria reported include the recursive
MSPE expressed as a ratio relative to the monthly average no-change forecast. Success ratios represent the fraction
of times the forecast correctly predicts the direction of change in the real price of oil. The first 30 months are dropped
to reduce starting-point effects.

Our results suggest that the PEPS approach is a simple yet effective way of improving forecast

accuracy for a wide variety of forecast approaches. However, as can be noted by the absence of

boldfaced values, even with PEPS none of the model-based forecasts significantly improve upon

the random walk no-change benchmark. This again highlights how important it is to compare

model-based forecasts against the higher standard of the random-walk no-change forecast.

To further illustrate this point, Table 4 shows the performance of the multivariate models

preferred by Baumeister and Kilian (2012) over their original sample period covering 1992M1 to
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2010M6. Using the updated REA slightly deteriorates the forecast performance of the (B)VARs

reported in Baumeister and Kilian (2012), but our replication still supports their conclusion that

model-based forecasts of the real price of WTI crude oil and the RAC are more accurate than the

average-price no-change forecast at shorter horizons.

Table 4. Replication of Baumeister and Kilian (2012) and Comparison to Random-Walk
No-Change Forecast

Model RW (EoM) BVAR VAR RW (EoM) BVAR VAR
Horizon

1 0.64 (0.005) 0.86 (0.201) 0.85 (0.237) 0.69 (0.011) 0.79 (0.147) 0.75 (0.145)
3 0.88 (0.047) 0.90 (0.224) 0.86 (0.281) 0.88 (0.044) 0.87 (0.194) 0.81 (0.223)
6 0.94 (0.035) 1.05 (0.753) 1.05 (0.654) 0.94 (0.030) 1.07 (0.824) 1.05 (0.646)

12 0.96 (0.046) 1.17 (0.957) 1.16 (0.944) 0.95 (0.027) 1.20 (0.975) 1.17 (0.944)

1 0.71 (0.000) 0.47 (0.896) 0.51 (0.332) 0.70 (0.000) 0.57 (0.031) 0.57 (0.011)
3 0.62 (0.001) 0.58 (0.091) 0.56 (0.101) 0.64 (0.000) 0.57 (0.047) 0.58 (0.019)
6 0.58 (0.028) 0.56 (0.326) 0.53 (0.367) 0.60 (0.008) 0.55 (0.217) 0.53 (0.263)

12 0.58 (0.031) 0.57 (0.191) 0.59 (0.037) 0.58 (0.049) 0.53 (0.411) 0.61 (0.010)

RAC

 Success Ratio

MSPE Ratio

WTI

Note: Replication of Baumeister and Kilian (2012)’s real-time, out-of-sample-forecasts of WTI crude oil prices and
the RAC for the original sample period, 1992M1–2010M6. The models are estimated with 12 autoregressive lags.
RW(EoM) stands for the random walk forecasts based on end-of-month prices. The brackets show the p-values
serial-dependence-robust tests of Diebold and Mariano (1995) for the null hypothesis of equal MSPEs relative to the
monthly average-price no-change and of Pesaran and Timmermann (2009) for the null of no directional accuracy.
Boldface values indicate improvements over the random-walk no-change forecast at the five percent level.

The standard interpretation of this short-run predictability is that model-based forecasts are

preferable over naive forecasts and that oil prices behave differently from the prices of other assets

such as stocks and exchange rates (Baumeister and Kilian, 2012). However, short-run predictabil-

ity relative to the conventional no-change forecast can also be a feature arising from temporally

aggregating time-series that are originally unpredictable (Ellwanger and Snudden, 2021b). In fact,

the direct comparison with the new benchmark, also displayed in Table 4, shows that the original

Baumeister and Kilian (2012) models performed no better (and often considerably worse) than

the random walk forecast from daily prices at forecast horizons up to one year. This shows that

contrary to common wisdom, the original results of Baumeister and Kilian (2012) do not provide

evidence in favor of model-based approaches, nor against the idea that oil prices have a strong

asset-price component. Instead, they are generally consistent with a random walk model for oil

prices.
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3.4 Period-End Price Sampling and Covariances

Given that averaging alters the dynamics and serial correlation of a series (see, e.g. Tiao, 1972;

Rossana and Seater, 1995), it seems plausible that end-of-period sampling affects established prop-

erties of model features. Consequently, this section investigates how the use of PEPS affects the

lag length selection and the predictive content of additional regressors in forecast models of the

real price of oil.

Table 5. Percent of Sample End-Points at which the Forecasts from the AR(2) Outperforms the
Forecasts from the AR(12) Model

Method Horizon 1 3 6 12 24
MSPE Ratio 94% 91% 90% 100% 100%

 Success Ratio 74% 100% 46% 100% 82%
MSPE Ratio 92% 48% 46% 49% 72%

 Success Ratio 96% 63% 71% 25% 100%

EoM Prices

Average Prices

Note: Dynamic, recursive, out-of-sample forecasts of WTI crude oil prices, 1992M1–2021M1. The first 30
months dropped to reduce starting-point effects. The table displays the percent of sample end-points at which
the forecasts from the AR(2) outperforms the forecasts from the AR(12) model. EoM Prices stands for autore-
gressive model estimated with end-of-month prices, Average Prices for models estimated average prices.

To tease out the effect of PEPS on forecast performance arising from changes in serial cor-

relation, we focus on univariate AR models. The relative performance of recursively estimated

models with 2 and 12 autoregressive lags is illustrated for forecasts of the real price of WTI crude

oil. Because the relative forecasting performance of models changes over time, Table 5 reports the

percent of sample end-points which favors the AR(2) model. Previous studies advocate for the

use of 12 or 24 lags when estimating autoregressive models (Alquist and Kilian, 2010; Baumeis-

ter and Kilian, 2012). However, without aggregation, the number of autoregressive lags may be

lower. As can be seen in Table 5, the MSPE criterion and, albeit to a somewhat lesser extent, the

success ratio, heavily favor the AR(2) model over the AR(12) model under the PEPS approach.

By contrast, under the conventional estimation with average price, there is no clear evidence for

either a longer or a shorter lag length. While the AR(2) performs well at the 1-step-ahead and

the 24-month-ahead prediction, there is no clear favorite for medium term forecasts, with AR(12)

models often outperforming the AR(2). Overall, these results suggest that the PEPS reduces the

number of optimal autoregressive lags in forecasting models.

To explore how co-variances are affected by PEPS, we also compare the forecast performance of

VAR models estimated with alternative measures of economic activity and oil inventories. For real

activity indexes, we consider four alternative measures to the REA: the composite leading indicator
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of the OECD and six major non-OECD countries (CLI); the Global Economic Conditions (GCON)

indicator from Baumeister et al. (2020); and World Industrial Production (WIP). For inventories,

we consider the unscaled U.S. petroleum inventories as an alternative to the standard proxy of

global crude oil inventories, which is obtained by scaling U.S. crude oil inventories by the ratio of

OECD petroleum stocks to US petroleum stocks (Kilian and Murphy, 2014; Baumeister and Kilian,

2012). The VAR models are estimated with 2 lags, which produces more accurate short-horizon

forecasts than models with longer lag lengths.

Table 6. VAR-Model Forecasts of the Real Price of WTI Crude Oil with Different Predictors
under the PEPS approach

Activity 
Index REA WIP CLI GCON REA WIP CLI GCON

Inventories
Horizon

1 0.62 (0.004) 0.55 (0.002) 0.56 (0.002) 0.57 (0.005) 0.62 (0.003) 0.54 (0.002) 0.56 (0.001) 0.55 (0.004)
3 0.95 (0.304) 0.81 (0.112) 0.82 (0.102) 0.82 (0.145) 0.96 (0.337) 0.82 (0.109) 0.83 (0.101) 0.83 (0.139)
6 1.11 (0.773) 0.88 (0.217) 0.86 (0.153) 0.86 (0.220) 1.12 (0.782) 0.88 (0.214) 0.86 (0.153) 0.87 (0.222)

12 1.30 (0.905) 0.90 (0.248) 0.86 (0.142) 0.88 (0.221) 1.30 (0.908) 0.91 (0.268) 0.86 (0.158) 0.89 (0.241)
24 1.25 (0.875) 0.95 (0.375) 0.90 (0.270) 0.95 (0.394) 1.25 (0.872) 0.96 (0.409) 0.91 (0.290) 0.97 (0.421)

1 0.69 (0.000) 0.71 (0.000) 0.71 (0.000) 0.70 (0.000) 0.71 (0.000) 0.72 (0.000) 0.70 (0.000) 0.70 (0.000)
3 0.57 (0.012) 0.58 (0.003) 0.61 (0.000) 0.59 (0.003) 0.56 (0.017) 0.58 (0.003) 0.61 (0.000) 0.58 (0.003)
6 0.57 (0.076) 0.55 (0.094) 0.56 (0.077) 0.55 (0.112) 0.56 (0.114) 0.54 (0.168) 0.57 (0.050) 0.55 (0.163)

12 0.55 (0.205) 0.54 (0.215) 0.53 (0.261) 0.55 (0.181) 0.55 (0.207) 0.54 (0.238) 0.53 (0.324) 0.55 (0.182)
24 0.55 (0.239) 0.60 (0.045) 0.60 (0.047) 0.61 (0.030) 0.56 (0.189) 0.60 (0.045) 0.60 (0.047) 0.61 (0.034)

MSPE Ratio

 Success Ratio

Global Crude Oil U.S. Petroleum

Note: Real-time, out-of-sample-forecasts of the real price of WTI crude oil, 1992M1–2021M1. All models are
estimated with two lags and end-of-month oil-price data. The table presents results for VAR models with
different combinations of measures of global economic activity and changes in oil inventories. The brackets
show the p-values serial-dependence-robust tests of Diebold and Mariano (1995) for the null hypothesis of equal
MSPEs relative to the monthly average-price no-change and of Pesaran and Timmermann (2009) for the null
of no directional accuracy. Boldface values indicate improvements over the random-walk no-change forecast at
the five percent level.

Both Snudden (2018) and Funk (2018) find evidence that in VAR models, including changes in

U.S. petroleum inventories provides superior forecasts to including changes in Kilian and Murphy

(2014)’s proxy for global crude oil inventories. However, in the updated sample and with period-end

price sampling, the forecast accuracy is consistently very similar across both inventory measures

(Table 6). Regarding the economic activity measures, recent studies have advocated to use the

WIP in VAR models (Funk, 2018; Snudden, 2018; Baumeister et al., 2020). Table 6 shows that

similar to the case of oil inventories, the forecast performance of models estimated with different

economic activity is almost indistinguishable across the GCON, CLI and WIP measures of global

economic activity. Only the corrected measure of the REA stands out, as models estimated with

17



the REA perform worse at both short and longer horizons. Taken together, these exercises suggest

that the choice of alternative predictor variables might become less relevant when end-of-month

prices are used in forecast models.

Overall, the performance of models estimated with the PEPS approach is impressive relative

to models estimated with average prices. However, none of the forecast models explored can

outperform the random-walk no-change benchmark at the 5 percent level at any forecast horizon.

The general message from this section is that established findings for models estimated with average

prices need to be re-evaluated when information on disaggregated oil prices is incorporated into

oil-price forecasts.

3.5 Forecast Combinations

Despite the large forecast gains from using the PEPS approach, the individual models considered

so far are unable to outperform the random-walk no-change forecast at horizons less than two

years. However, Ellwanger and Snudden (2021a) show that futures-based forecasts based on end-

of-period futures prices can outperform the random-walk no-change at horizons of one year and

beyond. Further, forecast combination approaches can often improve oil-price forecasts, as has been

documented in previous studies that examined models estimated with average prices (Baumeister

et al., 2014; Baumeister and Kilian, 2015; Garratt et al., 2019). In this section, we investigate

whether pooling model-based and futures-based forecasts computed with end-of-period data can

further improve forecast accuracy.

Several model-based forecast combinations are considered. First, we compute an equal-weighted

combination of four VAR models, estimated with the four different global activity indexes: REA,

CLI, WIP, and GCON. Second, we also consider an equal-combination of the corresponding BVAR

forecasts. Third, we consider an equal-weighted combination of four univariate models: AR, ARMA,

AR-ARCH and BAR.

We then consider three further forecast combinations involving a larger set of models and

information from oil futures prices. First, we consider an equal weighted forecast combination

across all multivariate and univariate models described in the previous paragraph. We then add the

futures-based forecast to the equal weighted forecast with the models. Finally, given the previously

documented success of the futures-based forecasts, we also consider a forecast combination that gives

half the weight to the futures-based forecasts and half the weight to an equal-weighted combination

of all model-based forecasts.
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All models are estimated with end-of-period observations following the PEPS approach de-

scribed in the previous sections. Consistent with our previous results, the (B)VAR models are

estimated with two lags.11 The univariate models are estimated with the same lag length as in the

previous sections, (B)AR(2), ARMA(1,1) and AR-ARCH(2,1). Futures-based forecasts are con-

structed using direct forecasts of the end-of-month futures prices following Ellwanger and Snudden

(2021a).

Table 7. Futures-based Forecasts and Forecast Combinations for the Real Price of WTI Crude Oil

Forecasts EoM Futures 4 VARs 4 BVARs 4 Univar. All 12 
Models

Models and 
Futures

1/2 Models, 
1/2 Futures

Horizon
1 0.59 (0.000) 0.59 (0.000) 0.55 (0.001) 0.55 (0.001) 0.56 (0.000) 0.55 (0.001) 0.55 (0.001) 0.55 (0.000)
3 0.89 (0.012) 0.87 (0.015) 0.83 (0.086) 0.83 (0.084) 0.84 (0.066) 0.83 (0.071) 0.83 (0.061) 0.83 (0.025)
6 0.95 (0.029) 0.91 (0.046) 0.89 (0.143) 0.90 (0.117) 0.89 (0.134) 0.88 (0.123) 0.88 (0.100) 0.87 (0.034)

12 0.96 (0.028) 0.83 (0.011) 0.92 (0.242) 0.93 (0.172) 0.87 (0.122) 0.90 (0.171) 0.88 (0.120) 0.82 (0.013)
24 0.99 (0.189) 0.79 (0.034) 0.95 (0.387) 0.93 (0.292) 0.87 (0.161) 0.91 (0.291) 0.88 (0.218) 0.78 (0.036)

1 0.71 (0.000) 0.72 (0.000) 0.71 (0.000) 0.71 (0.000) 0.71 (0.000) 0.71 (0.000) 0.70 (0.000) 0.71 (0.000)
3 0.61 (0.000) 0.60 (0.001) 0.60 (0.000) 0.61 (0.000) 0.60 (0.000) 0.59 (0.001) 0.60 (0.000) 0.62 (0.000)
6 0.55 (0.057) 0.56 (0.048) 0.58 (0.025) 0.57 (0.039) 0.52 (0.311) 0.58 (0.019) 0.58 (0.028) 0.56 (0.060)

12 0.57 (0.007) 0.65 (0.000) 0.58 (0.053) 0.56 (0.088) 0.54 (0.230) 0.55 (0.145) 0.57 (0.065) 0.58 (0.035)
24 0.52 (0.292) 0.64 (0.000) 0.63 (0.015) 0.58 (0.077) 0.60 (0.041) 0.62 (0.018) 0.62 (0.017) 0.59 (0.033)

MSPE Ratio

 Success Ratio

Note: Real-time, out-of-sample-forecasts of the real price of WTI crude oil, 1992M1–2021M1. “All 12 Models”
is an equal-weighted forecast of the 4 univariate (Univar.), the 4 BVAR, and the 4 VAR forecasts. The brackets
show the p-values serial-dependence-robust tests of Diebold and Mariano (1995) for the null hypothesis of equal
MSPEs relative to the monthly average-price no-change and of Pesaran and Timmermann (2009) for the null of no
directional accuracy. Boldface values indicate improvements over the random-walk no-change forecast at the five
percent level

For reference, the first two columns of Table 7 replicate the performance of the random walk no-

change forecast and Ellwanger and Snudden (2021a)’s futures-based forecasts, respectively. Despite

the exceptional forecast accuracy of the futures-based forecast relative to the monthly average no-

change forecast, it only significantly outperform the random-walk no-change forecast at the one-

and two-year horizon.

The combination of the four VAR, four BVAR, and four univariate models is displayed in

columns 4 to 6, respectively. Although the model-based forecast combinations perform better than

individual models and generally exhibit lower MSPEs than the random walk no-change forecast, the

differences are relatively small and not statistically significant. Only the two-year-ahead forecast

for the combination of the four BVARs significantly improve upon the random-walk no-change

forecast for the success ratio. Similar results are obtained for the equal-weighted combination of

11The results in this section are qualitatively unchanged for (B)VAR models with longer lags.
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all 12 models and the equal-weighted combination of all 12 models and the futures-based forecast,

displayed in columns 7 and 8.

Finally, the last column of Table 7 show that a forecast combination that puts a larger weight on

the futures-based forecast performs best. Its forecast is significantly better than the random walk

no-change at longer forecasts horizons, with MSPE reductions of up to 21% at the 2-year-ahead

forecast. Still, much of these gains in performance seems to be driven by the futures-based forecast,

and the combination actually deteriorates the success ratio of the futures-based forecast at longer

horizons.

Taken together, we find that combining forecasts and incorporating information from futures

can improve the accuracy of individual forecasts. The results mirror existing findings for models

estimated with average prices (Baumeister et al., 2014; Baumeister and Kilian, 2015). However,

the gains from pooling model-based forecasts and including futures prices occur at longer-term

forecast horizons. The inability of futures and models to significantly outperform the random-walk

no-change forecasts at shorter forecast horizons suggests again that oil prices are closer to asset

prices than assumed in the previous literature.

4 Extensions and Robustness

The results presented in the main section of the paper are remarkably robust to alternative mod-

elling choices. It can be shown that using ex-post revised data instead of real-time data does not

affect our main results.12 Moreover, our results are robust to alternative methods of deflating the

end-of-period and daily prices using the CPI deflator, as well as alternative methods of nowcasting

the CPI. This result is expected, as fluctuations in the CPI deflator are generally small compared

to the fluctuations in nominal oil prices.

The main results not only hold for real prices, but also for monthly average nominal prices.

The relative forecast gains of using the nominal closing price vis-à-vis the average nominal price

are similar to those documented for real oil prices. This result is consistent with the idea that

fluctuations in nominal oil prices, rather than fluctuations in inflation, drive our results.

The closing-price no-change forecast is also superior to the average-price no-change forecast for

quarterly and annual data, which are of primary interest to policymakers (Baumeister and Kilian,

2014, 2015). Consistent with the theoretical predictions in Ellwanger and Snudden (2021b), the

12For brevity, we do not provide additional exhibits for this section. Tables and figures are available upon request.
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improvements in the MSPE ratio at the one-step-ahead prediction are even larger at the quarterly

and annual frequency compared to the monthly frequency.

5 Conclusion

Model-based forecasts of the real price of crude oil have traditionally been computed from monthly

average data. We have shown how the use of daily oil-price data can provide large improvements

over the conventional practice. Univariate models that are estimated with daily or end-of-month

observations yield forecast improvements of up to 40% over traditional forecasts. Similar forecast-

ing gains are obtained from classical and Bayesian VARs that are estimated with end-of-month

observations. The results hold for both WTI and Brent crude oil prices as well as for U.S. refinery

acquisition costs of crude oil, for which pseudo disaggregated data can be imputed.

Our forecasts provide unprecedented improvements over the conventional monthly no-change

forecast computed from average data. However, a key insight from our paper is that this standard

forecast comparison can be misleading. The random-walk benchmark computed from end-of-month

prices is shown to raise the bar for model-based forecasts to claim practical usefulness.

Despite the impressive gains relative to the conventional benchmark, models estimated with

disaggregated data generally do not significantly outperform the random-walk forecast. We have

also shown that the new benchmark overturns influential results of the previous literature that

was thought to favor model-based forecasts over naive forecasts. Overall, our results demonstrate

that information from daily oil prices is crucial not only for implementing accurate model-based

forecasts of the real price of oil, but also for properly evaluating the merit of new and existing

forecast approaches.
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Online Appendix (Not for publication)

A1 Real-Time Data

This section describes the construction of the real-time data used in the empirical exercises.

Oil market variables: The real-time data for the nominal U.S. refiner acquisition cost for crude-

oil imports, world crude-oil production, U.S. crude-oil inventories, U.S. petroleum inventories, and

OECD petroleum inventories are obtained from the EIA. Real-time vintages start in 1973M1 and use

the vintages of Baumeister and Kilian (2012) from 1991M12 to 2010M12. Vintages from 2011M01

onwards are collected using the same data sources. 13 The updated real-time data is similar to

Garratt et al. (2019) but differs primarily in that all historical releases, and thus data revisions,

are included.

Other economic variables: For the construction of the Real Economic Activity index we use

Kilian (2009)’s freight-rate data until 1984M12 and, thereafter, monthly values of the Baltic Dry

Index obtained from Bloomberg. The index is computed using the corrected formula (Kilian, 2019).

As in Baumeister and Kilian (2012), the real-time data for the monthly seasonally adjusted U.S.

consumer price index for all urban consumers is obtained from the Economic Indicators published

by the Council of Economic Advisers from the FRASER database of the Federal Reserve Bank of St.

Louis and from the macroeconomic real-time database of the Federal Reserve Bank of Philadelphia.

The real-time composite leading indicator (CLI) of the OECD and six major non-OECD countries

is obtained from the Organization for Economic Co-Operation and Development (OECD, 2022).

CLI is available with a one-month delay until the 2006M05 vintage; vintages before that date use

the 2006M05 vintage and assume a one-month delay. Pseudo real-time data is constructed using the

2021M6 vintages of the Global Economic Conditions (GCON) indicator (Baumeister et al., 2020)

and World Industrial Production (WIP) of the OECD and 6 major other countries (Baumeister

and Hamilton, 2019), assuming a one and two month data delay, respectively.

Crude oil prices: Crude-oil price data for WTI and Brent are obtained from the EIA. Daily

closing prices for WTI and Brent are used to calculate both the monthly average and end-of-month

prices and are obtained from EIA Petroleum and other liquids. The monthly closing price is the

closing price on the last trading day of the month. Prices are updated daily by the EIA in “Today

in Energy.” The data for the previous day is updated between 7:30 a.m. and 8:30 a.m. EST and is

13This real-time database is updated monthly and is publicly available, along with further documentation on the
corresponding author’s website.
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not subject to revisions, which justifies treating both the end-of-month and monthly average data

as observed in real time.

The series of daily WTI and Brent prices provided by the EIA begin in 1986M1 and 1987M5,

respectively. The monthly closing WTI price is backcasted from 1986M1 to 1983M4 using the

growth rate in the monthly closing price of the one-month-ahead futures contract. All prices

before 1983M4 are backcasted using the growth rate of the RAC. Our main findings are robust to

estimating the models using end-of-month prices beginning in 1986M1 or 1983M4.

Table A1. Descriptive Statistics for the Real Prices of Crude Oil

Monthly Average Date Range Mean Std. Dev. Min Max
U.S. Refiner Acquisition Cost, Imported 1973m1 - 2021m1 24.03 12.31 5.95 60.85

Brent 1973m1 - 2021m1 23.50 10.67 6.08 61.56
West Texas Intermediate 1973m1 - 2021m1 22.63 11.09 5.71 58.34

End of Month Date Range Mean Std. Dev. Min Max
U.S. Refiner Acquisition Cost, Imported 1973m1 - 2021m1 24.07 12.37 5.76 63.64

Brent 1973m1 - 2021m1 22.27 10.23 5.02 64.36
West Texas Intermediate 1973m1 - 2021m1 21.39 10.51 5.13 60.68

Note: All series are the level of real prices from 1973M1–2021M5. 2021M5 data vintage. The end-of-month
price for the U.S. refiner acquisition cost (imported) is imputed using the WTI price. Nominal crude-oil price
data obtained from the Energy Information Administration and the consumer price index is obtained from the
Federal Reserve of Philadelphia.

Nowcasting

The CPI series, the global crude-oil market variables used in the VARs and the refiners import

price of crude oil are subject to historical revisions and are reported with a lag. For each vintage,

observations that are missing due to reporting lags are nowcasted following the standard approaches

(Baumeister and Kilian, 2012; Funk, 2018; Baumeister et al., 2020):

• Missing observations for global crude-oil production, WIP, GCON, CLI, and the U.S. CPI,

and U.S. crude-oil inventories are nowcasted by extending the series by using the average of

the historical growth rate at the respective point in time.

• Missing observations for the ratio of OECD petroleum inventories to U.S. petroleum inven-

tories are kept constant at the last available value for this ratio.

• Monthly nominal U.S. crude oil imported acquisition cost by refiners are extrapolated with

the growth rate of the monthly average of the nominal WTI price.
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