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1 A Brief Introduction

In this paper we give overview of some recent results in energy markets
modelling, and consider the clean renewable energy prospective in Canada,
and, in particular, in Alberta. This brief introduction gives a quick insight
into the eight papers in energy markets modelling we published during the
period of 2008-2021.

Some commodity prices, like oil and gas, exhibit the mean reversion,
unlike stock price. It means that they tend over time to return to some long-
term mean. We presented explicit option pricing formula for a mean-reverting
asset in energy market in the paper ”Explicit Option Pricing Formula for a
Mean-Reverting Asset in Energy Market ”(J. Numer. Appl. Math., V.1(96),
2008, 216-233).

1Research is supported by NSERC
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We calculate variance and volatility swaps in energy markets in ”Variance
and Volatility Swaps in Energy Markets” (The J. Energy Markets, V. 6, N.1,
Spring 2013, 33-50).

We use future contracts written on temperature to demonstrate the hedg-
ing strategies for commodities as an application of weather derivatives in
”Weather Derivatives in Energy Markets” (The J. Energy Markets, V.8, N.1,
March 2015, 59-76). Our focus was on the dynamic hedging strategy of
energy futures using temperature futures and constructing the hedge ratio.

Crude oil prices exhibit significant volatility over time and the distribution
of returns on crude oil prices show at tails and skewness, and they barely
follow normal distribution. This is the reason we use normal inverse Gaussian
process, jump diffusion process, and variance-gamma process as three Lévy
processes that do not have these drawbacks, and their tails carry heavier
mass than normal distribution. Our results indicate that all these three
Levy processes have very good out of sample results for near at the money
options than others. See ”Pricing Crude Oil Options using Lévy Processes”
(The J. Energy Markets, V.9, N 1, March 2016, 47-64).

We also considered stochastic modelling and pricing of energy markets’
contracts for stochastic volatilities with delay and jumps. Our model of
stochastic volatility exhibits jumps and also past-dependence: the behaviour
of a stock price right after a given time t not only depends on the situation
at t, but also on the whole past (history) of the process S(t) up to time t.
The basic products in these markets are spot, futures and forward contracts
and options written on these. We study forwards and swaps. A numerical
examples is presented for stochastic volatility with delay using the Henry Hub
daily natural gas data (1997-20011). See ”Energy Market Contracts with
Delayed and Jumped Volatilities” (Handbook of Energy Finance: Theories,
Practices and Simulations, World Scientific, 2019)

In ”Applications of Mean-reverting Processes in Alberta Energy Mar-
kets” (Mathematics (IF2.258), Pub Date : 2021-03-25) we introduced fuel-
switching price, which designed for encouraging power plant companies to
switch from coal to natural gas when they produce electricity and success-
fully applied on European market, to Albertan Market. Moreover, we intro-
duce energy-switching price which consider power switch from natural gas
to wind. We modelled these two prices using five mean reverting processes
including Regime-switching processes, Levy-driven Ornstein-Uhlenbeck pro-
cess and Inhomogeneous Geometric Brownian Motion, and estimate them
based on multiple procedures such as Maximum likelihood estimation and
Expectation-Maximization algorithm. At last, this paper proves previous
result applied on Albertan Market that the jump modelling techniques is
needed when modelling fuel-switching data. In addition, it not only gives
promising conclusion on the necessity of introducing Regime-switching mod-
els to the fuel-switching data, but also show that Regime-switching model is
better fitted to the data.

In March 2020, the prompt month WTI futures contract settled below
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zero for the first time in the contract’s history. Many market participants
apply the Black-76 model or some variation when calculating the value of the
options on this futures contract as a relatively straightforward, parametric
valuation method. This calculation model is hard wired into many commod-
ity trading and risk management systems, when the prices go below zero,
and traders and risk managers rely on its straightforward and reproducible
output. However, Black 76 requires positive underlying market prices. The
negative prompt month settlement price caused considerable consternation
among energy traders and risk managers. More generally, OTC options are
also available on basis or differential prices. These transactions are options
on the difference between two published indexes such as NYMEX Henry
Hub and AECO (for natural gas) or Cushing WTI and Houston (for crude
oil). As such, these instruments frequently have negative underlying market
prices. Our task was to propose alternative models to Black-76 to valuate
option prices when the underlying future contracts can assume negative val-
ues. The paper ”Alternatives to Black-76 Model for Options Valuation of
Futures Contracts” (Wilmott, 2021, issue 114, pages 40-49), considers some
alternatives to Black-76 model to value European options on future contracts
in which the underlying market prices can be negative or/and mean revert-
ing. We specifically consider two models, namely Ornstein-Uhlenbeck (OU),
for negative prices, and continuous-time GARCH (or inhomogeneous geo-
metric Brownian motion), for positive prices. We then analyze the results
and compare them with Black-76, the most commonly used model, when
the underlying market prices are positive. Numerical examples are presented
using WTI and NYMEX NG data sets.

Finally, we present a vision to transition to 100% wind, water & solar
energy in Canada. A group of U.S. civil engineering has calculated that
Canada could be completely powered by renewable energy, if we just decide to
do it. They say that would save $110.1 billion on health care costs every year
and prevent 9, 884 annual air pollution deaths. Their research is available at
thesolutionsproject.org.

The paper organized as follows. Option pricing formula for a mean-
reversion asset is considered in Section 2. Variance and volatility swaps
valuations in energy markets are presented in Section 3. Applications of
weather derivatives in energy markets are reviewed in Section 4. Pricing
crude oil options using Levy processes is considered in Section 5. Energy
contracts modelling with delayed and jumped volatilities is presented in Sec-
tion 6. Applications of mean-reverting processes in Alberta energy markets
are reviewed in Section 7. Alternatives to Black-76 model for options valua-
tion of futures contracts are considered in Section 8. A vision to transition
to 100% wind, water and solar energy in Canada is considered in Section 9.
Prospectives of wind and solar energy in Alberta are presented in Section 10.
Description of energy transition centre in Calgary, AB, Canada, is mentioned
in Section 11. Section 12 concludes the paper.
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2 Explicit Option Pricing Formula for a Mean-

Reverting Asset in Energy Market [1]

Let us consider a risky asset St following the mean-reverting stochastic pro-
cess given by the following stochastic differential equation

dSt = a(L− St)dt+ σStdWt,

where W is a standard Wiener process, σ > 0 is the volatility, the constant
L is called the ’long-term mean’ of the process, to which it reverts over time,
and a > 0 measures the ’strength’ of mean reversion.

This mean-reverting model is a one-factor version of the two-factor model
made popular in the context of energy modelling by Pilipovic (1997). We call
it continuous-time GARCH or inhomogeneous geometric Brownian motion
model.

Using a change of time method we find an explicit solution of this equation
and using this solution we are able to find the variance and volatility swaps
pricing formula under the physical measure. Then, using the same argument,
we find the option pricing formula under risk-neutral measure. Black’s model
(1976) and Schwartz’s model (1997) have become a standard approach to the
problem of pricing options on commodities. These models have the advantage
of mathematical convenience, in that they give rise to closed-form solutions
for some types of options.

C∗T = e−(r+a∗)TS(0)N(y+)− e−rTKN(y−)
+ L∗e−(r+a∗)T [(ea

∗T − 1)−
∫ y0

0
zF ∗T (dz)],

where
y+ := σ

√
T − y0 and y− := −y0,

a∗ := a+ λσ, L∗ :=
aL

a+ λσ
,

y0 is the solution of the following equation

y0 =
ln( K

S(0)
) + (σ

2

2
+ a∗)T

σ
√
T

−
ln(1 + a∗L∗

S(0)

∫ T
0
ea

∗se−σy0
√
s+σ2s

2 ds)

σ
√
T

,

and F ∗T (dz) is the probability distribution FT (dz), i.e., cdf of r.v.

η(T ) =
4ae−aT

σ2
e
−2Bσ2T

4

∫ σ2T/4

0

e2((2a/σ2+1)+Ws)ds,

but instead of a we have to take a∗ = a+ λσ, λ is a market price of risk. We
note that this cdf can be estimated and calculated by M. Yor’s (1992) result:
On some exponential functions of Brownian motion, Advances in Applied
Probability, Vol. 24, No. 3, 509-531.
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Remark: When L∗ = 0 and a∗ = −r, then the explicit option pricing
formula is the well-known Black-Scholes formula!

Numerical Example: AECO Natural GAS Index (1 May 1998-30 April
1999). We shall calculate the value of a European call option on the price of
a daily natural gas contract. To apply our formula for calculating this value
we need to calibrate the parameters a, L, σ and λ. These parameters
may be obtained from futures prices for the AECO Natural Gas Index for
the period 1 May 1998 to 30 April 1999 (see Bos, Ware and Pavlov (2002),
p.340). The parameters pertaining to the option are the following:

Price and Option Process Parameters
T a σ L λ r K
6 months 4.6488 1.5116 2.7264 0.1885 0.05 3

From this table we can calculate the values for a∗ and L∗ :

a∗ = a+ λσ = 4.9337,

and

L∗ =
aL

a+ λσ
= 2.5690.

For the value of S0 we can take S0 ∈ [1, 6].

Fig. 1. Dependence of ESt on T

(AECO Natural Gas Index (1

May 1998-30 April 1999))

Fig. 2. Dependence of ESt on

S0 and T (AECO Natural Gas

Index (1 May 1998-30 April

1999))
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Fig. 3. Dependence of variance

of St on S0 and T (AECO

Natural Gas Index (1 May

1998-30 April 1999))

Fig. 4. Dependence of European

Call Option Price on Maturity

(months) (S(0) = 1 and K = 3)

(AECO Natural Gas Index (1

May 1998-30 April 1999))

3 Variance and Volatility Swaps in Energy

Markets [2]

Variance swaps are quite common in commodity, e.g., in energy market, and
they are commonly traded. We consider Ornstein-Uhlenbeck process for com-
modity asset with stochastic volatility following continuous-time GARCH
model or Pilipovic (1998) one-factor model. The classical stochastic process
for the spot dynamics of commodity prices, as it was mentioned above, is
given by the Schwartz’ model (1997). It is defined as the exponential of an
Ornstein-Uhlenbeck (OU) process, and has become the standard model for
energy prices possessing mean-reverting features.

At maturity, a variance swap pays off the difference between the real-
ized variance of the futures contract over the life of the swap and the fixed
variance swap rate. And since a variance swap has zero net market value
at initiation, absence of arbitrage implies that the fixed variance swap rate
equals to conditional risk-neutral expectation of the realized variance over
the life of swap. Therefore, e.g., the time-series average of the payoff and/or
excess return on a variance swap is a measure of the variance risk premium.
Variance risk premia in energy commodities, crude oil and natural gas, has
been considered by Trolle and E. Schwartz (2009). The same methodology
as in Trolle & Schwartz (2009) was used by Carr & Wu (2009) in their study
of equity variance risk premia.

The S & P GSCI is comprised of 24 commodities with the weight of each
commodity determined by their relative levels of world production over the
past five years. The DJ-AIGCI is comprised of 19 commodities with the
weight of each component determined by liquidity and world production
values, with liquidity being the dominant factor. Crude oil and natural
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gas are the largest components in both indices. In 2007, their weight were
51.30% and 6.71%, respectively, in the S & P GSCI and 13.88%and 11.03%,
respectively, in the DJ-AIGCI.

The Chicago Board Options Exchange (CBOE) recently introduced a
Crude Oil Volatility Index (ticker symbol OVX). This index also measures
the conditional risk-neutral expectation of crude oil variance, but is com-
puted from a cross-section of listed options on the United States Oil Fund
(USO), which tracks the price of WTI as closely as possible. The CBOE
Crude Oil ETF Volatility Index (Oil VIX, Ticker - OVX) measures the mar-
ket’s expectation of 30-day volatility of crude oil prices by applying the VIX
methodology to United States Oil Fund, LP (Ticker - USO) options spanning
a wide range of strike prices (see Figures below. Courtesy-CBOE:
http://www.cboe.com/micro/oilvix/introduction.aspx).
We have to notice that crude oil and natural gas trade in units of 1,000 bar-
rels and 10,000 British thermal units (mmBtu), respectively. Usually, prices
are quoted as US dollars and cents per barrel or mmBtu.

We consider a risky asset in energy market with stochastic variance
following a mean-reverting stochastic process satisfying the following SDE
(continuous-time GARCH(1,1) model):

dσ2(t) = a(L− σ2(t))dt+ γσ2(t)dWt,

where a is a speed of mean reversion, L is the mean reverting level (or
equilibrium level), γ is the volatility of volatility σ(t), Wt is a standard Wiener
process. Using a change of time method we find an explicit solution of this
equation, and using this solution we are able to find the variance and volatility
swaps pricing formula under the physical measure. Then, using the same
argument, we find the option pricing formula under risk-neutral measure. We
applied Brockhaus-Long (2000) approximation to find the value of volatility
swap. A numerical example for the AECO Natural Gas Index for the period
1 May 1998 to 30 April 1999 is presented.

Risk-neutral stochastic volatility model has the following form:

dσ2(t) = a∗(L∗ − σ2(t))dt+ γσ2(t)dW ∗
t ,

where

a∗ := a+ λγ, L∗ :=
aL

a+ λγ
,

W ∗
t := Wt + λt, and λ is the market price of risk.

For the variance swap we have:

E∗σ2
R := EV :=

1

T

∫ T

0

Eσ2(t)dt =
(σ2(0)− L∗)

a∗T
(1− e−a∗T ) + L∗.

For the volatility swap we obtain (convexity adjustment formula):

E∗
√
V ≈

√
E∗V − V ar∗(V )

8(E∗V )3/2
.
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Numerical Example (AECO Natural Gas Index for the period 1
May 1998 to 30 April 1999):

Parameters
a γ L λ
4.6488 1.5116 2.7264 0.18

From this table we can calculate the values for risk adjusted parameters
a∗ and L∗ :

a∗ = a+ λγ = 4.9337,

and

L∗ =
aL

a+ λγ
= 2.5690.

For the value of σ2(0) we can take σ2(0) = 2.25.
For variance swap and for volatility swap with risk adjusted parameters

we use formula obtained above.

Fig. 1: Variance Swap Fig. 2: Volatility Swap
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Variance and Volatility Swaps in Energy Markets: Figures
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Fig. 3: Variance Swap (Risk

Adjusted Parameters)

Fig. 4: Volatility Swap (Risk

Adjusted Parameters)
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Variance and Volatility Swaps in Energy Markets: Figures
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Fig. 5: Comparison: Adjusted

and Non-Adjusted Price

Fig. 6: Convexity Adjustment

4 Weather Derivatives in Energy Markets [3,4]

The weather derivatives market, in which contracts written on weather in-
dices was firstly appeared over-the-counter (OTC) in July 1996 between
Aquila Energy and Consolidated Edison Co. from United States. After that,
companies accustomed to trading weather contracts based on electricity and
gas prices in order to hedge their price risks realized by weather during the
end of 1990s and the beginning of 2000s. Consequently, the market grew
rapidly and expanded to other industries and to Europe and Japan.

Reported from Weather Risk Management Association (WRMA), an in-
dustry body that represents the weather market, recently, the total notional
value of the global weather risk market has reached $11.8 billion in last
year. With geographic expansion, the OTC market boosted nearly 30% in
last year. In this article, we will concentrate on the market of temperature
derivatives found at the Chicago Mercantile Exchange (CME), which is one
of the largest weather derivatives trading platforms. Up to now, the CME
has weather futures and options traded based on a range of weather indices
for 47 cities from United States, Canada, Europe, Australia and Asia.

As a common sense, weather affects different entities in different ways. In
order to hedge these different types of risks, weather derivatives are written
on different types of weather variables or weather indices. The most com-
monly used weather variable is the temperature. Widely used temperature
indices include cumulative average temperature (CAT), heating degree days
(HDD) and cooling degree days (CDD). They are originated from the energy
industry, and designed to correlate well with the local demands for heating
or cooling.

CAT is defined as the sum of the daily average temperature over the pe-
riod [τ1, τ2] of the contract, the index CAT:=

∑τ2
t=τ1

T (t) =
∫ τ2
τ1
T (t)dt, where
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T (t) is the daily average temperature. It is mainly used in Europe and
Canada. In winter, HDD are used to measure the demand for heating, i.e.
they are a measure of how cold the weather is and usually used in United
States, Europe, Canada and Australia. In contrast, CDD are used in sum-
mer to measure the demand of energy used for cooling and a measure of how
hot the weather is. They are usually used in United States, Canada and
Australia.

The definitions for HDD and CDD are given by HDD:=max(T (t)− c, 0)
and CDD:=max(c−T (t), 0), where the constant c denotes the threshold, say
65◦F (18◦C). Since most air conditioners are switched on when temperatures
are above or below c.

With respect to our model, consider the weather index T (t), which is the
daily average temperature (DAT). We suppose the DAT has a generalization
of the Ornstein-Uhlenbeck dynamics

dT (t) = ds(t) + k(T (t)− s(t))dt+ σ(t)dL(t),

where L(t) is a Lévy process (jump-diffusion), s(t) is the seasonal mean level
and k is the speed in which the temperature reverts to s(t). σ(t) is assumed
to be a measurable and bounded function represents the seasonal volatility of
temperature. In the simplest case, L(t) = W (t)-a standard Wiener process.

This model was firstly introduced by Dornier and Queruel (2000) with
Brownian motion as the random noise. Benth and Saltyte-Benth (2005) has
successfully applied this model with generalized hyperbolic Lévy process to
the Norwegian temperature data. We applied this model to our Canadian
temperature data (Swishchuk & Cui (2013)).

We define the temperature futures prices written on CAT, CDD and
HDD, which constitute the three main classes of futures products at CME
market. Consider the price dynamic of future written on CAT over specific
time period [τ1, τ2], with τ1 < τ2. Firstly, assume the daily average tempera-
ture follows stochastic differential equation with L(t) being Lévy process and
a constant continuously compounding interest rate r.

The future price FCAT (t, τ1, τ2) at time 0 ≤ t ≤ τ1 based on CAT under
risk-neutral probability measure Q is:

FCAT (t, τ1, τ2) = EQ[

∫ τ2

τ1

T (s)ds|Ft],

where Q is the risk-neutral measure (specified through Esscher transform)
and Ft is σ-algebra generated by L(t).

Similarly, the risk-neutral CDD and HDD future prices are defined as:

FCDD(t, τ1, τ2) = EQ[

∫ τ2

τ1

max(T (s)− c, 0)ds|Ft],

and

FHDD(t, τ1, τ2) = EQ[

∫ τ2

τ1

max(c− T (t), 0)ds|Ft],
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The relationship between futures prices of CAT, CDD and HDD is defined
as

FCAT (t, τ1, τ2) + FHDD(t, τ1, τ2) = c(τ2 − τ1)− FCDD(t, τ1, τ2).

We use future contracts written on temperature to demonstrate the hedg-
ing strategies for commodities as an application of weather derivative.

Within several forms of weather derivatives, the future contract does not
require cost to enter a position, since when entering a future contract, the
probability of weather event being lower or higher than the threshold is the
same to both side, either side has the same chance of receiving payoff from
the counter party.

There are two types of hedging strategies using temperature futures in the
following contents.: the first strategy is a a) static hedging mainly focusing
on mitigating the volume risk of commodity sales using temperature futures;
the other strategy consider the b) dynamic hedging strategy of commodity
future using temperature futures:

a) In a static hedge, the number of hedging contracts is not changed over
the course of the hedge in response to any movement in the values of the
hedging instrument or the hedged asset.

b) In a dynamic hedge, on the other hand, more hedging contracts are
bought or sold to bring back the hedge ratio to the target hedge ratio.

A hedge ratio is the ratio of exposure to a hedging instrument to the
value of the hedged asset. A ratio of 1 or 100% means that the position is
fully hedged and a ratio of 0 means it is not hedged at all.

Without loss of generality, we choose the energy market as the one to
hedge using temperature futures.

Therefore, our focus will be on the dynamic hedging strategy of energy
futures using temperature futures. In the spirit of Broadie and Jain (2008),
consider a portfolio at time t containing one unit of energy (e.g. heating oil)
future FE and βt (βt is the hedge ratio for energy future FE) units of weather
futures FW , both with maturity (delivery) at time T. Assume the portfolio
has value Π(t) at time t, a constant risk-free interest rate r, then

Π(t) = e−r(T−t)[FE(t) + βtFW (t)]. (1)

The portfolio is self-financing, so the change in this portfolio in a small
amount of time dt is given by

dΠ(t) = rΠ(t)dt+ e−r(T−t)[dFE(t) + βtdFW (t)]. (2)

Hence, in order to dynamically hedge the energy future FE with maturity T ,
the stochastic component of portfolio vanishes, the hedge ratio βt could be
defined as

βt = − dFE(t)

dFW (t)
, (3)
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with an assumption that dFW (t) 6= 0. Therefore, from the last equation,
to hedge an energy futures, we are required to hold βt units of temperature
future at time t.

Therefore, we need to specify two models for energy and temperature
futures so that we could get the explicit dynamics of energy and temperature
futures, and hence get a closed form of the hedge ratio βt. For futures pricing
purpose, these models will be built on the underlings of futures, namely the
energy spot price and the daily average temperature.

Our energy and temperature models under risk-neutral measure Q are:

dX(t) =

(
θσE + κE

(
µ− σ2

E

2κE
−X(t)

))
dt+ σEdW

θ
E(t),

and

dT (t) = ds(t) + (θσW (t) + κW (T (t)− s(t)))dt+ σW (t)dW θ
T (t),

where θ is the market price of risk, X(t) = lnS(t), W θ
E(t) and W θ

T (t) are
Brownian motions (with correlation ρ) w.r.t. Q.

Combined Q dynamics system for energy futures FE and CAT futures
FW is

dFE(t, T ) = σEe
−κE(T−t) exp

(
µX(T ) + 1

2
σ2
X(T )

)
dW θ

E(t);

dFW (t, τ1, τ2) = κ−1
W (eκW (τ2−t) − eκW (τ1−t))σW (t)dW θ

W (t);

dW θ
E(t)dW θ

W (t) = ρdt,

where µX(T ) and σ2
X(T ) are expectation and variance of the log-spot

price X(t). Therefore,

βt = −c1(t)

c2(t)
ρ,

where c1(t) and c2(t) are time-dependent constant defined as: c1(t) := σEe
−κE(T−t) exp

(
µX(T ) + 1

2
σ2
X(T )

)
;

c2(t) := κ−1
W (eκW (τ2−t) − eκW (τ1−t))σW (t).

We choose the crude oil (crude oil is the world’s most actively traded
commodity, and the NYMEX (CME) division light, sweet crude oil futures
contract is the world’s most liquid forum for crude oil trading) futures as the
the one that we want to hedge using CAT futures. Followed by the calibration
method described in Schwarz (1997), the log-future prices lnFE(t, T ) need to
be rewritten as the standard state-space form and then applied to Kalman
filter to get the parameter set ΘE = {κE, µE, σE, θE} and spot price series
S(t).
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The data used to calibrate the energy future consist of daily generic obser-
vations of WTI light, sweet crude oil futures prices (these data are obtained
from Bloomberg financial service) with delivery periods in the first two front
months. The WTI crude oil futures data used in calibration cover the CME
exchange daily settlement prices ranging from January 2nd, 2001 to Decem-
ber 31st, 2010, resulting in 2508 record for each future contracts set (this
choice of data set is consistent with that in Swishchuk and Cui (2013), which
is 10 years of temperature data from January 1st, 2001 to December 31st,
2010 in Calgary, AB, Canada). Since there is no exact delivery date for each
contract, instead, the CME contract specification defines a delivery period
ranging from the first calendar day to the last calendar day of the delivery
month, we simply assume that the delivery date for each contract is the first
calendar day in the delivery month to calculate the time to maturity value
Ti − t.

Table below presents the estimation results for the energy model applied
to the WTI crude oil future price data. The last two parameters ξ1 and ξ2

are the diagonal entries of matrix H := V ar(εt) with random noise εt.

Parameter µ σE κE θ ξ1 ξ2

Estimation 3.9187 0.0215 0.0025 0.2009 0.0003 0.0123

For the temperature market, we follow the calibration procedure de-
scribed in Swishchuk and Cui (2013) to get the parameter set ΘW = {κW , σW}.
For illustration purpose, we choose the estimated parameters in Calgary as
the ones under the temperature market to calculate the hedge ratio. Recall
the calibration results for Calgary in Swishchuk and Cui (2013), we could
get the parameter set ΘW = {κW , σW} in Calgary as follows:
κW = −0.2411
and annual seasonal volatility σW = 4.424+1.633 cos(0.0167t)+0.1912 sin(0.0167t).
To calculate the correlation parameter ρ, we use the correlation between the
filtered log-spot price and daily average temperature as a natural approx-
imation to ρ. By taking all the daily average temperature on the dates
with future prices available, and calculating the correlation coefficient be-
tween log-spot prices and average temperature of these days over 10 years
(from January 2nd, 2001 to December 31st, 2010), we have the correlation
ρ = 0.1058. This correlation indicates a positive correlation between the log-
spot price of crude oil and daily average temperature. With the calibrated
parameters in energy model and temperature model, we could then calculate
the dynamic hedge ratio βt explicitly. In the Figure below, we plot the initial
hedge ratio β0 along the crude oil future delivery time (in days) and initial
log-spot price dimensions.
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From this Figure, we could find that if one hold a crude oil futures,
initially he need to short some CAT futures in the portfolio depending on the
spot price of the crude oil and the time to delivery (trade termination) length.
Basically the number of temperature futures one need to hold will be more
with longer time to delivery and higher spot price of the crude oil. Moreover,
we could conclude that the same effect holds for other energy commodities,
such as heating oil, gas and so on, since they are usually positively correlated
to the crude oil market movement.

5 Pricing Crude Oil Options using Lévy Pro-

cesses [5]

Crude oil prices exhibit significant volatility over time and the distribution of
returns on crude oil prices show fat tails and skewness, and they barely follow
normal distribution. This is the reason we use Normal Gaussian Process
(NIG), Jump Diffusion Process (JD), and Variance-Gamma Process (VG)
as three Levy processes that do not have these drawbacks and their tails
carry heavier mass than normal distribution. We use fractional fast Fourier
transform to calibrate parameters in an optimization setup, using data on
European-style options on crude oil futures in NYMEX for the settlement
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date of April 24th, 2015. Our results indicate that all these three Levy
processes have very good out of sample results for near at the money options
than others.

We consider:
Merton’s (1976) Jump Diffusion Model:

dSt
St

= µdt+ σdWt + (eα+βε − 1)dNt,

where Brownian motion Wt and Poisson process Nt are independent,
ε ≈ N(0, 1);

Normal Inverse Gaussian (NIG) Model:

St = S0 exp{µQt+Xt},

where µQ is the drift under Q measure,

Xt = βδ2It + δWIt

is a NIG process, It is the inverse Gaussian process. NIG process has three
parameters, tail-heaviness α, skewness β and scale δ;

Variance Gamma (VG) Model:

St = S0 exp{µQt+Xt},

where Xt is a VG process such that

Xt = θIt + σWIt ,

and It is a gamma process with parameter v.
Figures, Tables and Estimations are shown below.
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Fig. 1. Dependence of ESt on T (AECO

Natural Gas Index (1 May 1998-30 April 1999))

Fig. 2. Dependence of ESt on S0 and T (AECO

Natural Gas Index (1 May 1998-30 April 1999))
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Fig. 3. Dependence of variance of St on S0 and

T (AECO Natural Gas Index (1 May 1998-30

April 1999))

Fig. 4. Dependence of European Call Option

Price on Maturity (months) (S(0) = 1 and

K = 3) (AECO Natural Gas Index (1 May

1998-30 April 1999))
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Fig. 1. Dependence of ESt on T (AECO

Natural Gas Index (1 May 1998-30 April 1999))

Fig. 2. Dependence of ESt on S0 and T (AECO

Natural Gas Index (1 May 1998-30 April 1999))
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Fig. 3. Dependence of variance of St on S0 and

T (AECO Natural Gas Index (1 May 1998-30

April 1999))

Fig. 4. Dependence of European Call Option

Price on Maturity (months) (S(0) = 1 and

K = 3) (AECO Natural Gas Index (1 May

1998-30 April 1999))
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Fig. 4. Dependence of European Call Option Price on Maturity (months)

(S(0) = 1 and K = 3) (AECO Natural Gas Index (1 May 1998-30 April

1999))

The volatility of crude oil prices is very important for policy makers, crude
oil producers and refineries. We used most recent data through April 2016
from crude oil futures and options markets to model dynamics of crude oil
prices. Our results indicate that crude oil prices show significant jumps that
are very frequent. Crude oil price returns show skew as well. These findings
are consistent across all three models we used in this research.

In the case of JDM, the volatility of size of the jumps is bigger than
volatility of the diffusion part. The VG process results in slightly smaller
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volatility than JDM. The mean of the jump component size implied by JDM,
and skew parameter of VG process both indicate existence of right-skew in
crude oil price returns, but the NIG process implies that the density of returns
are skewed to the left.

6 Energy Market Contracts with Delayed and

Jumped Volatilities [6]

We consider in this section stochastic modelling and pricing of energy mar-
kets’ contracts for stochastic volatilities with delay and jumps. Our model of
stochastic volatility exhibits jumps and also past-dependence: the behaviour
of a stock price right after a given time t not only depends on the situation at
t, but also on the whole past (history) of the process S(t) up to time t. The
spot price process S(t) is modelled by the OU process driven by independent
increments process. The basic products in these markets are spot, futures
and forward contracts and options written on these. We study forwards and
swaps. A numerical examples is presented for stochastic volatility with delay
using the Henry Hub daily natural gas data (1997-20011). Definition of IIP
(see [Skorokhod, 1991], [Benth et al., 2008]): An adapted RCLL stochastic
process I(t) starting at zero is an IIP (Independent Increment proces) if it
satisfies the following two conditions:

1) The increments I(t0), I(t1)− I(t0), ..., I(tn)− I(tn−1) are independent
r.v. for any partition 0 ≤ t0 < t1 < ... < tn, and n ≥ 1.

2) It is continuous in probability, that is, for every t ≥ 0 and ε > 0, it

lim
s→t

P (|I(s)− I(t)| > ε) = 0.

If we add the condition that increments are stationary, then I(t) is called
a Lévy process. (See [Sato, 1999], [Schoutens, 2003]). If the increments
of Lévy process are normally distributed then we have a Brownian motion.
Lévy processes which are increasing, that is, having only positive jumps, are
often called subordinators. Sometimes the IIPs are called additive processes.
(See [Sato, 1999]).

Let the stochastic process S(t) be denoted as (we call it Geometric Models
with Stochastic Delayed and Jumped Volatility):

lnS(t) = ln Λ(t) +
m∑
i=1

Xi(t) +
n∑
j=1

Yj(t),

where for i = 1, ...,m

dXi(t) = (µi(t)− αi(t)Xi(t))dt+ σi(t,Xi(t+ θ))dB(t),

and for j = 1, ..., n

dYj(t) = (δj(t)− βj(t)Yj(t))dt+ ηj(t, Yj(t+ θ))dIj(t).
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Here, θ ∈ [−τ, 0], τ > 0, is the delay, and on the interval [−τ, 0], Xi(t) =
φi(t) and Yj(t) = ψj(t), where φi(t) and ψj(t) are deterministic functions,
i = 1, ...,m and j = 1, ..., n.

We remark that two factors Xi(t), i = 1, ...,m, and Yj(t), j = 1, ..., n,
represent the long- and short-term fluctuations of the spot dynamics which
may be correlated. We suppose that jumps components Ij are independent,
which is an obvious restriction of generality.

The deterministic seasonal price level is modelled by the function Λ(t),
(seasonal function) which is assumed to be continuously differentiable. The
coefficients µi, αi, δjβj are all continuous functions. We suppose that volatil-
ities σik(t) and ηj(t) are stochastic volatilities with delay and jumps. We
consider two cases in this situation:

dσ2
i (t,Xi(t+θ))

dt
= γ1

i Vi + α
τ
[
∫ t
t−τ σi(u,Xi(u+ θ)dB(u)

+
∫ t
t−τ σi(u,Xi(u+ θ)dÑ1(t)]2

− (ai + bi)σ
2
i (t,Xi(t+ θ))

and
dη2j (t,Yj(t+θ))

dt
= γ2

jWi + α
τ
[
∫ t
t−τ ηj(u,Xj(u+ θ)dB1(u)

+
∫ t
t−τ σi(u,Xi(u+ θ)dÑ2(t)]2

− (cj + dj)η
2
j (t,Xi(t+ θ)

Here, B(t) and B1(t) are two independent Brownian motions and Ñ1(t)
and Ñ2(t) are two independent compensated Poisson processes with intensi-
ties λ1 and λ2, independent of B(t) and B1(t).

We note, that in [Benth et al., (2008)] it was considered only deterministic
σi(t) and ηj(t).

Let the stochastic process S(t) be defined as (we call it Arithmetic Models
with Stochastic Delayed and Jumped Volatility)

S(t) = Λ(t) +
m∑
i=1

Xi(t) +
n∑
j=1

Yj(t),

where Xi(t), i = 1, ...,m, and Yj(t), j = 1, ..., n, are defined for the geometric
models above and the seasonality function Λ(t) is the same.

We suppose that for this model the volatilities σ2
i (t,Xi(t+θ)) and η2

j (t, Yj(t+
θ)) satisfied the same equations as for the case of Geometric Models.

We study the pricing of forwards and swaps for the above-mentioned
model with delayed and jumped volatilities.

When entering the forward contract, one agrees on a future delivery time
and the price to be paid for receiving the underlying. Suppose that the
delivery time is T, with 0 ≤ t ≤ T < +∞, and that the agreed price to pay
upon delivery is f(t, T ) :

f(t, T ) = EQ[S(T )|Ft]−
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fundamental pricing relation between the spot and forward price. Since the
energy markets are incomplete, the choice of martingale measure Q is open.

Let us consider swaps, using the electricity market as the typical exam-
ple. The buyer of an electricity futures receives power during a settlement
period (physically or financially), against paying a fixed price per MWh. Let
F (t, τ1, τ2) be the electricity futures price at time t for the delivery period
[τ1, τ2] with τ1 ≤ τ2.

In general, we can write the link between a swap contract and the under-
lying spot as

F (t, τ1, τ2) = EQ[

∫ τ2

τ1

w(u, τ1, τ2)S(u)du|Ft],

where w is a weight function.
The dynamics of forward price, t → f(t, T ), wrt Qθ in the Geometric

Model case is

df(t,T )
f(t,T )

= {
∑m

i=1 σi(t,Xi(t+ θ)) exp(−
∫ T
t
αi(u)du)}dBθ(t)

+
∑n

j=1{
∫
R

exp(zηj(t, Yj(t+ θ))e−
∫ τ
t βj(u)du)− 1}Ñ θ

j (dt, dz).

The risk-neutral dynamics of the swap price F (t, τ1, τ2) in the Geometric
Models case is given by

dF (t,τ1,τ2)
F (t−,τ1,τ2)

=
∑m

i=1 σi(t,Xi(t+ θ))dBθ(t)

+
∑n

j=1

∫
R

(eηj(t,Yj(t+θ))z − 1)Ñ θ
j (dz, dt).

The risk-neutral dynamics of the swap price F (t, τ1, τ2) in the Arithmetic
Models case is given by

dF (t, τ1, τ2) =
∑m

i=1 σi(t,Xi(t+ θ))
∫ τ2
τ1)
w(u, τ1, τ2)e−

∫ u
v αi(s)dsdudBθ(t)

+
∑n

j=1

∫
R
zηj(t, Yj(t+ θ))

×
∫ τ2
τ1
w(u, τ1, τ2)e−

∫ u
v βj(s)dsduÑ θ

j (dt, dz).

Numerical Example: Henry Hub Natural Gas Daily Spot Prices
(1997-2011)

This numerical example and figures are borrowed from [Otunuga and
Ladde, 2014]. In this paper, the authors used the model for spot price with
delayed stochastic volatility from the paper [Kazmerchuk, Swishchuk and
Wu, 2005], and applied it to the Henry Hub daily natural gas data set for
the period 02/01/2001- 09/30/2004. The data was collected from the United
State Energy Information Administration website (www.eia.gov). From Fig-
ure 1 below we can see the properties of the gas daily spot prices: randomly
driven, non-negative, mean reversion, jumps (spikes), unpredictability of spot
price volatility:
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Figure 1: Plot of Henry Hub Daily Natural Gas Spot Prices (1997-2011)

(Courtesy-[Otunuga and Ladde, 2014])
Table 1 below gives descriptive statistics of Henry Hub Daily Natural Gas

spot prices (1997-2011):
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Table 1: Descriptive Statistics of Henry Hub Daily Natural Gas Spot Prices (1997-2011)

(Courtesy-[Otunuga and Ladde, 2014])
As we can see from the Table 1 above, the logarithmic price is better than
the raw price data because the variance for log is the smallest.

A simple model for the spot price is considered:

lnS(t) = X(t),

where
dX(t) = γ(k −X(t))dt+ σ(t,X(t))dB(t),

and
σ2(t,X(t))

dt
= [α + β

∫ t

t−τ
σ(s,X(s))dB(s)]2 + cσ2(t,X(t)).

The model for σ2(t,X(t)) above is the same as the model for stochastic
volatility with delay that we considered in [Kazmerchuk, Swishchuk and Wu,
2005].

Discrete scheme is implemented: l = 2 = [ τ
∆

], where ∆ is the size of the
mesh of the discrete-time grid, [, ] is the floor function.

Estimated Parameters are (Courtesy-[Otunuga and Ladde, 2014]):

γ k τ α β c

1.8943 1.5627 0.008 0.433 − 0.07 − 1.5
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Graphs below, Figure 2, includes Real, Simulated Spot Prices and Simu-
lated Expected Spot Price (Henry Hub Daily Natural Gas Data Set (02/01/2001-
09/30/2004)):

Figure 2: Real, Simulated Spot Prices and Simulated Expected Spot Price

(Courtesy-[Otunuga and Ladde, 2014])
Graph below, Figure 3, shows simulated σ(t,X(t)) from Henry Hub Daily

Natural Gas Data Set (02/01/2001-09/30/2004)).
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Figure 3: Simulated σ(t,X(t)) (Courtesy-[Otunuga and Ladde, 2014])

7 Mean-reverting Processes in Alberta En-

ergy Markets Modelling [7]

The paper [7] is a bridge between fossil fuel energy research papers mentioned
above, [1]-[6], and clean energy research papers which will be produced in
near future.

In [7] paper we introduced a fuel-switching price to the Alberta market,
which is designed for encouraging power plant companies to switch from coal
to natural gas when they produce electricity; this has been successfully ap-
plied to the European market. Moreover, we consider an energy-switching
price which considers power switch from natural gas to wind. We modelled
these two prices using five mean reverting processes including a Regime-
switching processes, Lévy-driven Ornstein–Uhlenbeck process and Inhomo-
geneous Geometric Brownian Motion, and estimate them based on multi-
ple procedures such as Maximum likelihood estimation and Expectation-
Maximization algorithm. Finally, this paper proves previous results applied
to the Albertan Market where the jump modelling technique is needed when
modelling fuel-switching data. In addition, it not only gives promising con-
clusions on the necessity of introducing Regime-switching models to the fuel-
switching data, but also shows that the Regime-switching model is better
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fitted to the data
Electricity prices are effected by factors such as weather conditions, eco-

nomic growth, political principles and fuel-switching, where the fuel-switching
is the only one that is controllable by the company itself. This paper [7] in-
troduced a fuel-switching price, which explains how to switch from coal to
natural gas when producing electricity, and how this can apply to the Al-
bertan energy market. In the Albertan market, there are examples of power
plant companies which are working on fuel switching, such as Transalta’s
Coal-to-Gas Conversions Project and Capital Power’s Repowering Genesees
Project. We also introduced an energy-switching price which considers a
power switch from natural gas to wind. Moreover, note that this paper
focuses on different jump and regime-switching mean-reverting stochastic
models, where the financial and economic meanings and their applications
will be discussed in another paper. We modelled these two prices using five
mean-reverting processes and including regime-switching processes, such as
the Lévy-driven Ornstein–Uhlenbeck process and inhomogeneous geometric
motion. The estimation of these processes is based on multiple procedures
such as maximum likelihood estimation and the expectation-maximization
algorithm. This paper also justified previous results applied to the Alber-
tan energy market showing that the jump modelling technique is needed
when modelling fuel-switching data. Finally, the novelty of the paper lies
not only in giving a promising conclusion on the necessity of introducing
regime-switching models to the fuel-switching data, but also in showing that
regime-switching models are better fitted to the data.

Thus, we considered five mean-reverting processes in this paper:
• Inhomogeneous geometric Brownian motion (IGBM):

dSt = a(L− St)dt+ σStdWt,

where a, L, σ > 0, Wtis a standard Brownian motion;
• OU process (OU):

dXt = k(θ −Xt)dt+ σdWt,

where k, θ > 0, Wt is a standard Brownian motion;
• Lévy-driven OU process (LDOU):

dXt = k(θ −Xt)dt+ σdLt,

where k, θ > 0, Lt is a Lévy process;
• Regime-switching OU process (RSOU)

dXt = κ(Zt)(θ(Zt)−Xt)dt+ σ(Zt)dWt,

where Zt is a continuous-time finite-state Markov chain, k(z), θ(z) > 0 are
bounded function of z.
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• Regime-switching Lévy-driven OU process (RSLDOU):

dXt = κ(Zt)(θ(Zt)−Xt)dt+ σ(Zt)dLt,

After the model comparison, we were able to conclude that the RSOU pro-
cess and OU process are the best models for fuel-switching price and energy-
switching price, respectively. We could see that for the fuel-switching price,
the regime-switching model largely increases the goodness of fit compared
to other models, which indicates the important property of regime-switching
for this price. Moreover, jump modelling techniques are also important as
they increase the performance of the OU process, and this finding is similar
to the previous results from North American and European Markets. As
reflected by the stochastic models, the fuel-switching price in the Albertan
market includes jumps and regime-switching. However, as the natural gas
price keep decreasing in Alberta, more and more companies have already
switched their power plant to natural gas, and this is why we need to further
consider energy-switching prices. The best fit of the OU process on energy-
switching price reflects the steadiness of wind price, since it is a uniform
distributed process.

8 Alternatives to Black-76 Model for Options

Valuations of Futures Contracts [8]

In March 2020, the prompt month WTI futures contract settled below zero for
the first time in the contract’s history. Many market participants apply the
Black-76 model or some variation when calculating the value of the options
on this futures contract as a relatively straightforward, parametric valuation
method. However, Black 76 requires positive underlying market prices. The
negative prompt month settlement price caused considerable consternation
among energy traders and risk managers.

More generally, OTC options are also available on basis or differential
prices. These transactions are options on the difference between two pub-
lished indexes such as NYMEX Henry Hub and AECO (for natural gas)
or Cushing WTI and Houston (for crude oil). As such, these instruments
frequently have negative underlying market prices.

Thus, our task was to propose alternative models to Black-76 to valu-
ate option prices when the underlying future contracts can assume negative
values.

In this paper [8], we proposed some alternatives to Black-76 model to
value European options on future contracts in which the underlying mar-
ket prices can be negative or/and mean reverting. We specifically con-
sider two models, namely Ornstein-Uhlenbeck (OU), for negative prices, and
continuous-time GARCH (or inhomogeneous geometric Brownian motion),
for positive prices. We then analyze the results and compare them with
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Black-76, the most commonly used model, when the underlying market prices
are positive. Numerical examples are presented using WTI and NYMEX NG
data sets.

Our methodology is the following one:

1. Take data (prices), sketch their behaviour, i.e., their evolution in time;

2. If the prices are positive and not mean-reverting, then use geometric
Brownian motion (GBM) model for their evolution and Black-76 for-
mula for option valuation of futures (see also formulas (BlCall) and
(BlPut) in [12];

3. If the prices are positive and mean-reverting, then use continuous-time
GARCH (or, another name, inhomogeneous GBM model) model [12]
and option pricing formula (35) from [1], Theorem 5.1;

4. If the prices are both positive and negative, but not mean-reverting,
then use Bachelier model and his formula (see formulas (Ba 1) and
(Ba 2) below and in [12];

5. If the prices are both positive and negative, and mean-reverting with
mean-reverting level 0, then use Ornstein-Uhlenbeck model and the
formulas (OUCall 1) and (OUCall 2) below and from [12];

6. If the prices are both positive and negative, and mean-reverting with
mean-reverting level non-zero, then use Vasicek model and the formu-
las (VasCall 1) and (VasCall 2) below and from [12].

In this paper we have shown how this methodology works on data sets
presented by Scott Dalton (Ovintiv Services Inc.), namely, we used WTI and
NYMEX NG data sets.

9 A Vision to Transition to 100% Wind, Wa-

ter & Solar Energy in Canada [9]

A group of U.S. civil engineering has calculated that Canada could be com-
pletely powered by renewable energy, if we just decide to do it.

They say that would save $110.1 billion on health care costs every year
and prevent 9, 884 annual air pollution deaths.

Their research is available at thesolutionsproject.org.
2050 PROJECTED ENERGY MIX:

-Onshore wind: 27.5%
-Offshore wind: 22.9%
-Hydroelectric: 14.5%
-Concentrated solar plants: 9.8%
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-Commercial&government rooftop solar: 9.1%
-Solar plants: 6.9%
-Residential rooftop solar: 5.3%
-Wave devices: 2.2%
-Geothermal: 1.7%
-Tidal turbines: 0.2%

40 Year Jobs Created (Number of jobs where a person is employed for 40
consecutive years):
-Construction jobs: 315, 138
-Operation jobs: 367, 889

-Reducing Energy Demand: −38%
(by improving energy efficiency and powering the grid with electricity from
the wind, water and sun positively reduces the overall energy demand)

32



Health Cost Savings:
-Avoided health costs per year: $110.12B(3.94%) of country GDP
-Lives lost to air pollusion that we could save each year: 9, 884
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Land Usage (percentage of Canada Land Needed for All New Wind, Wa-
ter & Solar Generators):
-Footprint Area: 0.03%; -Spacing Area: 0.25%

34



Average Energy Costs in 2050:
-Fossil Fuels & Nuclear Energy: 7.96¢
-Wind, Water & Solar: 9.71¢
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Money in Your Pocket:
-Energy cost savings per person: $40.70
-Energy, health, and climate cost savings per person: $10, 618
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10 Wind and Solar Energy in Alberta [10]

Alberta could lead Canada in wind and solar power by 2025, expert says.
It forecasts that 83% of the combined utility-scale wind and solar capacity
built in Canada over the next five years will be in Alberta. That wouldn’t
include smaller renewable development such as residential rooftop solar.
According to the data that Rystad tracks, Alberta’s current renewable ca-
pacity includes 0.1 gigawatt (GW) of solar and 1.8 GW of wind. By 2025,
it expects that to grow to 1.8 GW of solar and 6.5 GW of wind. Rystad
forecasts Ontario will have about 1.8 GW solar and 5.8 GW wind in 2025.
Tan said Alberta’s commitment to stop burning coal to generate electricity
by 2030 ”opens the door” for wind and solar to play a larger role.
We have 7693 Solar PV Systems in Alberta; 77% Residential, 11% Commer-
cial, 11% Farm, 1% Other.
Alberta now ranks third in Canada for installed wind energy capacity.
Wind represents 9% of Alberta’s total generation.
Alberta hydro electric facilities represent 5.5% of the market capacity of in-
stalled generation.
Travers Solar Project in Alberta is the size of 1,600 football fields and is
making Alberta a leader in green energy. Amazon announced in June 2021
it will purchase power from a massive new solar farm in Alberta, marking
the e-commerce giant’s second renewable energy investment in Canada.
Construction began in the fall of 2020 on Travers Solar, a $700 − million,
465-MW project southeast of Calgary, which its developers say will be the
largest solar photovoltaic project in Canada and one of the largest in the
world.
Privately held Greengate Power Corp. of Calgary has been working on the
project for four years and is expected to have it completed by 2022. ”It’ll
consist of 1.3 million solar panels spread over more than 3,000 acres (1,215
hectares) of farmland,” said Dan Balaban, CEO of Greengate Power. ”And
it’ll produce a sustainable source of energy for more than 150,000 homes.”

11 Energy Transition Center in Calgary, AB,

Canada [11]

$2.14M investment announced to support energy transition collaboration
between UCalgary ecosystem and energy industry. The Energy Transition
Centre (ETC) is a three-year project with a budget of 17.5 million. Energy
Transition Centre in downtown Calgary will support clean energy startup
companies.

The University of Calgary ecosystem is poised to lead the energy tran-
sition with an investment announced this week from the Government of
Canada. Prairies Economic Development Canada (PrairiesCan) is invest-
ing 2, 140, 205 to support the Energy Transition Centre (ETC) in downtown
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Calgary.
The Energy Transition Centre is expected to support innovative clean

energy development and generate economic activity through new business
opportunities and research and development, while also assisting the com-
mercialization of technologies for industry. Over the next three years, the
initiative expects to create 25 new small- and medium-sized firms while as-
sisting an additional 25 existing firms in accelerating their technologies for
the clean technology sector. The ETC is a collaboration between the Uni-
versity of Calgary, Innovate Calgary, Avatar Innovations, and the energy
industry. It is expected that programming at the ETC will engage highly
qualified personnel from both the academic and industry sectors through ca-
reer development, as well as technology development in areas of emerging
technologies crucial for the energy transition. This includes engaging and
supporting diverse industry employees as well as those involved in university
research.

The ETC is designed to encourage energy transition solutions by provid-
ing programming that focuses on a mass upskilling of energy workers. This
will be achieved through a training curriculum that cultivates cross-learning
between energy professionals and university postdocs. Programs will also
nurture transformative technologies through curriculum that entwines both
business and technology de-risking components and provides access to tech-
nical experts and capital markets for commercialization.

Ampersand building in downtown Calgary, site of the Energy Transition
Centre

Gathering space at the Energy Transition Centre.
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12 Conclusion and Future Work

The paper overviewed our recent results in energy market modelling, includ-
ing: option pricing formula for a mean-reversion asset; variance and volatility
swaps in energy markets; applications of weather derivatives in energy mar-
kets; pricing crude oil options using Levy processes; energy contracts mod-
elling with delayed and jumped volatilities; applications of mean-reverting
processes in Alberta energy markets. We will also considered the clean re-
newable energy prospective in Canada, and, in particular in Alberta and
Calgary. The future research work will be devoted to the renewable energy
markets modelling, including wind, solar and water energy modelling.
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2. Swishchuk, A. (2013): Variance and volatility swaps in energy markets.
The J. Energy Markets, 6(1), 33-50.

39



3. Swishchuk, A. and Cui, K. (2013): Weather derivatives with applica-
tions to Canadian data. J. Math. Finance, 3(1), 81-95.

4. Cui, K. & Swishchuk, A. (2015): Applications of weather derivatives
in energy market. The J. Energy Markets, 8(1), 59-76.

5. Shahmoradi, A. & Swishchuk, A. (2016): Pricing crude oil options
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